Publications by authors named "Taylor M Levee"

Neuroblastoma (NB) is the most common extracranial solid tumor in children. Although only a few recurrent somatic mutations have been identified, chromosomal abnormalities, including the loss of heterozygosity (LOH) at the chromosome 1p and gains of chromosome 17q, are often seen in the high-risk cases. The biological basis and evolutionary forces that drive such genetic abnormalities remain enigmatic.

View Article and Find Full Text PDF

Basal cell carcinoma (BCC) is a locally invasive epithelial cancer that is primarily driven by the Hedgehog (HH) pathway. Advanced BCCs are a critical subset of BCCs that frequently acquire resistance to Smoothened (SMO) inhibitors and identifying pathways that bypass SMO could provide alternative treatments for patients with advanced or metastatic BCC. Here, we use a combination of RNA-sequencing analysis of advanced human BCC tumor-normal pairs and immunostaining of human and mouse BCC samples to identify a PI3K pathway expression signature in BCC.

View Article and Find Full Text PDF

For nearly a decade, researchers in the field of pediatric oncology have been using zebrafish as a model for understanding the contributions of genetic alternations to the pathogenesis of neuroblastoma (NB), and exploring the molecular and cellular mechanisms that underlie neuroblastoma initiation and metastasis. In this review, we will enumerate and illustrate the key advantages of using the zebrafish model in NB research, which allows researchers to: monitor tumor development in real-time; robustly manipulate gene expression (either transiently or stably); rapidly evaluate the cooperative interactions of multiple genetic alterations to disease pathogenesis; and provide a highly efficient and low-cost methodology to screen for effective pharmaceutical interventions (both alone and in combination with one another). This review will then list some of the common challenges of using the zebrafish model and provide strategies for overcoming these difficulties.

View Article and Find Full Text PDF

Advanced basal cell carcinomas (BCCs) are driven by the Hedgehog (HH) pathway and often possess inherent resistance to SMO inhibitors. Identifying and targeting pathways that bypass SMO could provide alternative treatments for patients with advanced or metastatic BCC. Here, we use a combination of RNA-sequencing analysis of advanced human BCC tumor-normal pairs and immunostaining of human and mouse BCC samples to identify an MTOR expression signature in BCC.

View Article and Find Full Text PDF

One of the greatest barriers to curative treatment of neuroblastoma is its frequent metastatic outgrowth prior to diagnosis, especially in cases driven by amplification of the oncogene. However, only a limited number of regulatory proteins that contribute to this complex -mediated process have been elucidated. Here we show that the () gene, located at chromosome band 17p13.

View Article and Find Full Text PDF