Publications by authors named "Taylor M Ingle"

Introduction: Lyme disease, the most common tick-borne infectious disease in the US, is caused by a spirochetal pathogen (). Distinct host responses are observed in susceptible and resistant strains of inbred of mice following infection with reflecting a subset of inflammatory responses observed in human Lyme disease. The advent of post-genomic methodologies and genomic data sets enables dissecting the host responses to advance therapeutic options for limiting the pathogen transmission and/or treatment of Lyme disease.

View Article and Find Full Text PDF

Transformation techniques used to genetically manipulate Borrelia burgdorferi, the agent of Lyme disease, play a critical role in generating mutants that facilitate analyses of the role of genes in the pathophysiology of this bacterium. A number of borrelial mutants have been successfully isolated and characterized since the first electrotransformation procedure was established 25 years ago (Samuels, 1995). This article is directed at additional considerations for transforming infectious B.

View Article and Find Full Text PDF

Plasmonic nanomaterials as drug delivery or bio-imaging agents are typically introduced to biological systems through intravenous administration. However, the potential for agglomeration of nanoparticles in biological systems could dramatically affect their pharmacokinetic profile and toxic potential. Development of rapid screening methods to evaluate agglomeration is urgently needed to monitor the physical nature of nanoparticles as they are introduced into blood.

View Article and Find Full Text PDF

Innovative research and diagnostic techniques for biological testing have advanced during recent years because of the development of semiconductor nanocrystals. Although these commercially available, fluorescent nanocrystals have a protective organic coating, the inner core contains cadmium and selenium. Because these metals have the potential for detrimental environmental effects, concerns have been raised over our lack of understanding about the environmental fate of these products.

View Article and Find Full Text PDF

When incubated with nanomolar concentrations of fluorescent semiconductor nanocrystals in moderately hard water the fluorescence of living Ceriodaphnia dubia increased. Average pixel intensity of exposed animals was greater than that of unexposed animals and increased in a dose and exposure time-dependent-manner. Internal structures were clearly visible in exposed and unexposed animals but fluorescence was most intense in the region of the abdominal appendages of exposed animals.

View Article and Find Full Text PDF