A central question in the field of aging research is to identify the cellular and molecular basis of neuroresilience. One potential candidate is the small GTPase, Rab10. Here, we used Rab10 mice to investigate the molecular mechanisms underlying Rab10-mediated neuroresilience.
View Article and Find Full Text PDFIntroduction: Premedication with acetaminophen and/or diphenhydramine to prevent febrile nonhemolytic transfusion reactions and minor allergic transfusion reactions is a common practice based on historical recommendations. However, recent small randomized-controlled trials showed no benefit of premedication. This inconsistency leads to practice variability, which results in the inefficiency of our institution's blood product ordering process.
View Article and Find Full Text PDFRecent evidence identifies a potent role for aerobic exercise to modulate the activity of hypothalamic neurons related to appetite; however, these studies have been primarily performed in male rodents. Since females have markedly different neuronal mechanisms regulating food intake, the current study aimed to determine the effects of acute treadmill exercise on hypothalamic neuron populations involved in regulating appetite in female mice. Mature, untrained female mice were exposed to acute sedentary, low- (10 m/min), moderate- (14 m/min), and high (18 m/min)-intensity treadmill exercise in a randomized crossover design.
View Article and Find Full Text PDFNeurosci Lett
November 2021
The ability to generate new hippocampal neurons throughout adulthood and successfully integrate them into existing neural networks is critical to cognitive function, while disordered regulation of this process results in neurodegenerative or psychiatric disease. Consequently, identifying the molecular mechanisms promoting homeostatic hippocampal neurogenesis in adults is essential to understanding the etiologies of these disorders and developing therapeutic interventions. For example, recent evidence identifies a strong association between metabolic function and adult hippocampal neurogenesis.
View Article and Find Full Text PDFEmerging evidence identifies a potent role for aerobic exercise to modulate activity of neurons involved in regulating appetite; however, these studies produce conflicting results. These discrepancies may be, in part, due to methodological differences, including differences in exercise intensity and pre-exercise energy status. Consequently, the current study utilized a translational, well-controlled, within-subject, treadmill exercise protocol to investigate the differential effects of energy status and exercise intensity on post-exercise feeding behavior and appetite-controlling neurons in the hypothalamus.
View Article and Find Full Text PDFEmerging evidence implicates the circulating α-klotho protein as a prominent regulator of energy balance and substrate metabolism, with diverse, tissue-specific functions. Despite its well-documented ubiquitous role inhibiting insulin signaling, α-klotho elicits potent antidiabetic and anti-obesogenic effects. α-Klotho facilitates insulin release and promotes β cell health in the pancreas, stimulates lipid oxidation in liver and adipose tissue, attenuates hepatic gluconeogenesis, and increases whole-body energy expenditure.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
May 2021
Rho-kinase 1 (ROCK1) has been implicated in diverse metabolic functions throughout the body, with promising evidence identifying ROCK1 as a therapeutic target in diabetes and obesity. Considering these metabolic roles, several pharmacological inhibitors have been developed to elucidate the mechanisms underlying ROCK1 function. Y27632 and fasudil are two common ROCK1 inhibitors; however, they have varying non-specific selectivity to inhibit other AGC kinase subfamily members and whole-body pharmacological approaches lack tissue-specific insight.
View Article and Find Full Text PDFObjective: Our laboratory recently identified the centrally circulating α-klotho protein as a novel hypothalamic regulator of food intake and glucose metabolism in mice. The current study aimed to investigate novel molecular effectors of central α-klotho in the arcuate nucleus of the hypothalamus (ARC), while further deciphering its role regulating energy balance in both humans and mice.
Methods: Cerebrospinal fluid (CSF) was collected from 22 adults undergoing lower limb orthopedic surgeries, and correlations between body weight and α-klotho were determined using an α-klotho enzyme-linked immunosorbent assay (ELISA) kit.
While much is known about the role of agouti-regulated peptide/neuropeptide Y (AgRP/NPY) and pro-opiomelanocortin (POMC) neurons to regulate energy homeostasis, little is known about how forced energy expenditure, such as exercise, modulates these neurons and if these neurons are involved in post-exercise feeding behaviors. We utilized multiple mouse models to investigate the effects of acute, moderate-intensity exercise on food intake and neuronal activity in the arcuate nucleus (ARC) of the hypothalamus. NPY-GFP reporter mice were utilized for immunohistochemistry and patch-clamp electrophysiology experiments investigating neuronal activation immediately after acute treadmill exercise.
View Article and Find Full Text PDFα-Klotho is a circulating factor with well-documented antiaging properties. However, the central role of α-klotho in metabolism remains largely unexplored. The current study investigated the potential role of central α-klotho to modulate neuropeptide Y/agouti-related peptide (NPY/AgRP)-expressing neurons, energy balance, and glucose homeostasis.
View Article and Find Full Text PDFBackground: This study investigated the effects of coffee ingestion with supplemental caffeine (CAF) on serum testosterone (T) responses to exercise in recreationally strength-trained males.
Methods: Subjects ingested 6 mg/kg body weight of caffeine via 12 ounces of coffee (CAF) supplemented with anhydrous caffeine or decaffeinated (DEC) coffee prior to exercise in a randomized, within-subject, crossover design. The exercise session consisted of 21 minutes of high-intensity interval cycling (alternating intensities at power outputs associated with 2.
α-Klotho, a known anti-aging protein, exerts diverse physiological effects including: maintenance of phosphate and calcium homeostasis, modulation of cell proliferation, and enhanced buffering of reactive oxygen species. However, the role of α-Klotho in the regulation of energy metabolism is complex and poorly understood. Here we investigated the effects of 5 weeks peripheral administration of α-Klotho in high fat diet induced obese mice.
View Article and Find Full Text PDFVertical sleeve gastrectomy (VSG) is an effective surgery to treat obesity and diabetes. However, the direct effect of VSG on metabolic functions is not fully understood. We aimed to investigate if alterations in hypothalamic neurons were linked with perturbations in liver metabolism after VSG in an energy intake-controlled obese mouse model.
View Article and Find Full Text PDFThe potential to control feeding behavior via hypothalamic AgRP/NPY neurons has led to many approaches to modulate their excitability-particularly by glutamatergic input. In the present study using NPY-hrGFP reporter mice, we visualize AgRP/NPY neuronal metabotropic glutamate receptor 1 (mGluR1) expression and test the effect of fasting on mGluR1 function. Using the pharmacological agonist dihydroxyphenylglycine (DHPG), we demonstrate the enhanced capacity of mGluR1 to drive firing of AgRP/NPY neurons after overnight fasting, while antagonist 3-MATIDA reduces firing.
View Article and Find Full Text PDFAlzheimer's disease is a neurodegenerative disorder that affects the central nervous system. In this study, we characterized and examined the early metabolic changes in the triple transgenic mouse AD model (3xtg-AD), and their relationship with the hypothalamus, a key regulator of metabolism in the central nervous system. We observed that the 3xtg-AD model exhibited significantly higher oxygen consumption as well as food intake before reported amyloid plaque formation, indicating that metabolic abnormalities occurred at early onset in the 3xtg-AD model compared with their counterparts.
View Article and Find Full Text PDF