Publications by authors named "Taylor L Harris"

Previous work has shown that osteoprogenitor cells (Prx1+) and pre-osteoblasts (Osx+) contribute to mechanical loading-induced bone formation. However, the role of mature Dmp1-expressing osteoblasts has not been reported. In this study we assessed the contribution of osteoblast lineage cells to bone formation at an early time point following mechanical loading (day 8 from onset of loading).

View Article and Find Full Text PDF
Article Synopsis
  • * The study identified over 150 differentially expressed genes (DEGs) in osteocytes from loaded mice compared to controls, with Ngf and Wnt1 being significant across both day 1 and day 5 after loading.
  • * Results indicated that mechanical loading affects not just gene expression in osteocytes but also leads to changes in extracellular matrix remodeling, suggesting a complex response involving various biological processes related to bone health.
View Article and Find Full Text PDF

Mechanical loading is a potent strategy to induce bone formation, but with aging, the bone formation response to the same mechanical stimulus diminishes. Our main objectives were to (i) discover the potential transcriptional differences and (ii) compare the periosteal cell proliferation between tibias of young-adult and old mice in response to strain-matched mechanical loading. First, to discover potential age-related transcriptional differences, we performed RNA sequencing (RNA-seq) to compare the loading responses between tibias of young-adult (5-month) and old (22-month) C57BL/6N female mice following 1, 3, or 5 days of axial loading (loaded versus non-loaded).

View Article and Find Full Text PDF

The negative side effects of opioid-based narcotics underscore the search for alternative non-opioid bioactive compounds that act on the peripheral nervous system to avoid central nervous system-mediated side effects. The transient receptor potential V1 ion channel (TRPV1) is a peripheral pain generator activated and sensitized by heat, capsaicin, and a variety of endogenous ligands. TRPV1 contributes to peripheral sensitization and hyperalgesia, in part, triggering the release of proinflammatory peptides, such as calcitonin gene-related peptide (CGRP), both locally and at the dorsal horn of the spinal cord.

View Article and Find Full Text PDF