While fetal growth is dependent on many factors, optimal placental function is a prerequisite for a normal pregnancy outcome. The majority of fetal growth-restricted (FGR) pregnancies result from placental insufficiency (PI). The insulin-like growth factors (IGF1 and IGF2) stimulate fetal growth and placental development and function.
View Article and Find Full Text PDFThe placenta facilitates the transport of nutrients to the fetus, removal of waste products from the fetus, immune protection of the fetus and functions as an endocrine organ, thereby determining the environment for fetal growth and development. Additionally, the placenta is a highly metabolic organ in itself, utilizing a majority of the oxygen and glucose derived from maternal circulation. Consequently, optimal placental function is required for the offspring to reach its genetic potential in utero.
View Article and Find Full Text PDFReproductive efficiency is critically dependent on embryo survival, establishment of a successful pregnancy and placental development. Recent advances in gene editing technology have enabled investigators to use gene knockdown and knockout approaches to better understand the role of hormone signaling in placental function and fetal growth and development. In this review, an overview of ruminant placentation will be provided, including recent data highlighting the role of histone lysine demethylase 1A and androgen signaling in ruminant placenta and pregnancy.
View Article and Find Full Text PDFTo improve efficiency of somatic cell nuclear transfer (SCNT), it is necessary to modify differentiated donor cells to become more amendable for reprogramming by the oocyte cytoplasm. A key feature that distinguishes somatic/differentiated cells from embryonic/undifferentiated cells is cellular metabolism, with somatic cells using oxidative phosphorylation (OXPHOS) while embryonic cells utilize glycolysis. Inducing metabolic reprogramming in donor cells could improve SCNT efficiency by priming cells to become more embryonic in nature before SCNT hypoxia inducible factor 1-α (HIF1-α), a transcription factor that allows for cell survival in low oxygen, promotes a metabolic switch from OXPHOS to glycolysis.
View Article and Find Full Text PDFHypotaurine (HT) is a routine component of porcine embryo culture medium, functioning as an antioxidant, but its requirement may be diminished as most embryo culture systems now use 5% O instead of atmospheric (20%) O . Our objective was to determine the effects of removing HT from the culture medium on porcine preimplantation embryo development. Embryos cultured in 20% O without HT had decreased blastocyst development compared to culture with HT or in 5% O with or without HT.
View Article and Find Full Text PDF