Publications by authors named "Taylor K Chapple"

Coral reef ecosystems are highly threatened and can be extremely sensitive to the effects of climate change. Multiple shark species rely on coral reefs as important habitat and, as such, play a number of significant ecological roles in these ecosystems. How environmental stress impacts routine, site-attached reef shark behavior, remains relatively unexplored.

View Article and Find Full Text PDF

Animal-borne tags are effective instruments for collecting ocean data and can be used to fill spatial gaps in the observing network. We deployed the first conductivity, temperature, and depth (CTD) satellite tags on the dorsal fin of salmon sharks (Lamna ditropis) to demonstrate the potential of sharks to monitor essential ocean variables and oceanographic features in the Gulf of Alaska. Over 1360 km and 36 days in the summer of 2015, the salmon shark collected 56 geolocated, temperature-salinity profiles.

View Article and Find Full Text PDF

Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species.

View Article and Find Full Text PDF

A wide array of technologies are available for gaining insight into the movement of wild aquatic animals. Although acoustic telemetry can lack the fine-scale spatial resolution of some satellite tracking technologies, the substantially longer battery life can yield important long-term data on individual behavior and movement for low per-unit cost. Typically, however, receiver arrays are designed to maximize spatial coverage at the cost of positional accuracy leading to potentially longer detection gaps as individuals move out of range between monitored locations.

View Article and Find Full Text PDF

We present the first mitochondrial genome of from the Chagos Archipelago in the British Indian Ocean Territory (BIOT) Marine Protected Area (MPA). The mitochondrial genome of is 16,701 bp in length and consists of 13 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and a non-coding control region (D-loop). GC content was at 40.

View Article and Find Full Text PDF

We present the first mitochondrial genome of from the Chagos Archipelago in the British Indian Ocean Territory (BIOT) Marine Protected Area. The mitogenome was 16,702 bp in length and consisted of 13 protein-coding genes (PCGs), 22 tRNA genes, 2 rRNA genes, and a non-coding control region (D-loop). GC content was at 38.

View Article and Find Full Text PDF
Article Synopsis
  • The Chagos archipelago has been under-researched in terms of genetic studies of its shark populations, particularly due to threats from illegal fishing.
  • Researchers have sequenced the complete mitochondrial genome of the Silvertip Shark from this region, which is 16,706 base pairs long, featuring important genetic components.
  • This genetic information aims to help develop methods for monitoring shark populations and improve conservation efforts in the British Indian Ocean Territory.
View Article and Find Full Text PDF

We report the first mitochondrial genome sequences for the gray reef shark, . Two specimens from the British Indian Ocean Territory were sequenced independently using two different next generation sequencing methods, namely short read sequencing on the Illumina HiSeq and long read sequencing on the Oxford Nanopore Technologies' MinION sequencer. The two sequences are 99.

View Article and Find Full Text PDF

Tiger sharks, , are a keystone, top-order predator that are assumed to engage in cost-efficient movement and foraging patterns. To investigate the extent to which oscillatory diving by tiger sharks conform to these patterns, we used a biologging approach to model their cost of transport. High-resolution biologging tags with tri-axial sensors were deployed on 21 tiger sharks at Ningaloo Reef for durations of 5-48 h.

View Article and Find Full Text PDF

Effective ocean management and the conservation of highly migratory species depend on resolving the overlap between animal movements and distributions, and fishing effort. However, this information is lacking at a global scale. Here we show, using a big-data approach that combines satellite-tracked movements of pelagic sharks and global fishing fleets, that 24% of the mean monthly space used by sharks falls under the footprint of pelagic longline fisheries.

View Article and Find Full Text PDF

Traditional forms of marine wildlife research are often restricted to coarse telemetry or surface-based observations, limiting information on fine-scale behaviours such as predator-prey events and interactions with habitat features. We use contemporary animal-attached cameras with motion sensing dataloggers, to reveal novel behaviours by white sharks, Carcharodon carcharias, within areas of kelp forest in South Africa. All white sharks tagged in this study spent time adjacent to kelp forests, with several moving throughout densely kelp-covered areas, navigating through channels and pushing directly through stipes and fronds.

View Article and Find Full Text PDF

Conventional methods for management of data-rich fisheries maintain sustainable populations by assuring that lifetime reproduction is adequate for individuals to replace themselves and accounting for density-dependent recruitment. Fishing is not allowed to reduce relative lifetime reproduction, the fraction of current egg production relative to unfished egg production (FLEP), below a sustainable level. Because most shark fisheries are data poor, other representations of persistence status have been used, including linear demographic models, which incorporate life-history characteristics in age-structured models with no density dependence.

View Article and Find Full Text PDF

Elucidating how mobile ocean predators utilize the pelagic environment is vital to understanding the dynamics of oceanic species and ecosystems. Pop-up archival transmitting (PAT) tags have emerged as an important tool to describe animal migrations in oceanic environments where direct observation is not feasible. Available PAT tag data, however, are for the most part limited to geographic position, swimming depth and environmental temperature, making effective behavioral observation challenging.

View Article and Find Full Text PDF

The white shark (Carcharodon carcharias) is a wide-ranging apex predator in the northeastern Pacific (NEP). Electronic tagging has demonstrated that white sharks exhibit a regular migratory pattern, occurring at coastal sites during the late summer, autumn and early winter and moving offshore to oceanic habitats during the remainder of the year, although the purpose of these migrations remains unclear. The purpose of this study was to use stable isotope analysis (SIA) to provide insight into the trophic ecology and migratory behaviors of white sharks in the NEP.

View Article and Find Full Text PDF

The decline of sharks in the global oceans underscores the need for careful assessment and monitoring of remaining populations. The northeastern Pacific is the home range for a genetically distinct clade of white sharks (Carcharodon carcharias). Little is known about the conservation status of this demographically isolated population, concentrated seasonally at two discrete aggregation sites: Central California (CCA) and Guadalupe Island, Mexico.

View Article and Find Full Text PDF

Mark-recapture techniques can be used to estimate white shark () population abundance. These frameworks are based on assumptions that marks are conserved and animals are present at the sampling location over the entire duration of the study. Though these assumptions have been validated across short-time scales for white sharks, long-term studies of population trends are dependent on these assumptions being valid across longer periods.

View Article and Find Full Text PDF

Advances in electronic tagging and genetic research are making it possible to discern population structure for pelagic marine predators once thought to be panmictic. However, reconciling migration patterns and gene flow to define the resolution of discrete population management units remains a major challenge, and a vital conservation priority for threatened species such as oceanic sharks. Many such species have been flagged for international protection, yet effective population assessments and management actions are hindered by lack of knowledge about the geographical extent and size of distinct populations.

View Article and Find Full Text PDF