Host response aimed at eliminating the infecting pathogen, as well as the pathogen itself, can cause tissue injury. Tissue injury leads to the release of a myriad of cellular components including mitochondrial DNA, which the host senses through pattern recognition receptors. How the sensing of tissue injury by the host shapes the anti-pathogen response remains poorly understood.
View Article and Find Full Text PDFIn this study, following encapsulation of ellagic acid (EA), an anti-cancer agent, loaded in schizophyllan (EA/SPG-NP) and chitin (EA/Ch-NP) nanoparticles, its release in 95% ethanol, and different mediums of digestive systems with pH ranging 1.5 to 7.4, were examined before investigating for treatment of breast cancer MCF-7cells.
View Article and Find Full Text PDFIn this study, an HER2 aptamer-decorated curcumin-loaded human serum albumin nanoparticle (Apt-HSA/CCM NP) was developed and characterized as a new anticancer formulation for targeted delivery to human epithelial growth factor receptor 2 (HER2) overexpressing breast cancer cells. Conjugation of HER2 Apt to the surface of HSA NPs was confirmed by gel electrophoresis and FTIR analysis. The obtained NPs have the hydrodynamic diameter of 281.
View Article and Find Full Text PDFOxidized sucrose cross-linked Schizophyllan nanogel was successfully synthesized via inverse emulsion method for the first time. The synthesis process was conducted in the absence of both toxic cross-linker and organic solvent. The nanogel crosslinking network was prepared using fractionated coconut oil as the continuous phase and oxidized sucrose as the cross-linker.
View Article and Find Full Text PDFThe purpose of this study was to fabricate redox-responsive human serum albumin (HSA) nanoparticles (NPs) through self-assembly of HSA molecules for incorporation of curcumin (CCM) as a hydrophobic drug molecule. The structural changes of HSA in self-assembly process of nanoparticle formation were investigated using fluorescence, UV-vis, circular dichroism spectroscopy and X-ray diffraction. Spectroscopy data show changes in secondary and tertiary structures of HSA in the process of nanoparticle formation, which can be indicative of the interaction of the hydrophobic drug with HSA molecules.
View Article and Find Full Text PDFDuring the last decades significant progress has been made in the field of cancer immunotherapy. However, cancer vaccines have not been successful in clinical trials due to poor immunogenicity of antigen, limitations of safety associated with traditional systemic delivery as well as the complex regulation of the immune system in tumor microenvironment. In recent years, nanotechnology-based delivery systems have attracted great interest in the field of immunotherapy since they provide new opportunities to fight the cancer.
View Article and Find Full Text PDFDNA vaccines against human papillomavirus (HPV) type 16 have not been successful in clinical trials, due to the lack of an appropriate delivery system. In this study, a peptide-based gene delivery system, MPG, which forms stable non-covalent nanoparticles with nucleic acids, was used for in vitro and in vivo delivery of HPV16 E7 DNA as a model antigen. The results demonstrated that at Nitrogen/Phosphate (N/P) ratio over 10:1, this peptide can effectively condense plasmid DNA into stable nanoparticles with an average size of 180-210nm and a positive surface charge.
View Article and Find Full Text PDFBackground: The poor permeability of the plasma and nuclear membranes to DNA plasmids are two major barriers for the development of these therapeutic molecules. Therefore, success in gene therapy approaches depends on the development of efficient and safe non-viral delivery systems.
Objectives: The aim of this study was to investigate the delivery of plasmid DNA encoding HPV16 E7 gene using cell penetrating peptide delivery system to achieve the best conditions for cell transfection and protein expression.
Nanocarriers with various compositions and biological properties have been extensively applied for in vitro/in vivo drug and gene delivery. The family of nanocarriers includes polymeric nanoparticles, lipid-based carriers (liposomes/micelles), dendrimers, carbon nanotubes, and gold nanoparticles (nanoshells/nanocages). Among different delivery systems, polymeric carriers have several properties such as: easy to synthesize, inexpensive, biocompatible, biodegradable, non-immunogenic, non-toxic, and water soluble.
View Article and Find Full Text PDF