Eur J Med Chem
December 2024
Antimicrobial resistance is currently one of the biggest challenges in controlling infectious diseases and was listed among the top 10 threats to global health by the World Health Organization (WHO) in 2023. The antibiotics misuse has led to the widespread emergence of antimicrobial resistance, marking the beginning of the alarming increase in antibiotic resistance. In this context, Antimicrobial Photodynamic Therapy (aPDT) has garnered significant attention from the scientific community due to its potential to effectively eliminate multidrug-resistant pathogenic bacteria and its low propensity to induce drug resistance, which bacteria can quickly develop against traditional antibiotic treatments.
View Article and Find Full Text PDFRhenium complexes show great promise as anticancer drug candidates. Specifically, compounds with a Re(CO)(NN)(py) core in their architecture have shown cytotoxicity equal to or greater than that of well-established anticancer drugs based on platinum or organic molecules. This study aimed to evaluate how the strength of the interaction between rhenium(I) tricarbonyl complexes fac-[Re(CO)(NN)(py)], NN = 1,10-phenanthroline (phen), dipyrido[3,2-f:2',3'-h]quinoxaline (dpq) or dipyrido[3,2-a:2'3'-c]phenazine (dppz) and biomolecules (protein, lipid and DNA) impacted the corresponding cytotoxic effect in cells.
View Article and Find Full Text PDFThe lipid composition impacts directly on the structure and function of the cytoplasmic as well as organelle membranes. Depending on the type of membrane, specific lipids are required to accommodate, intercalate, or pack membrane proteins to the proper functioning of the cells/organelles. Rather than being only a physical barrier that separates the inner from the outer spaces, membranes are responsible for many biochemical events such as cell-to-cell communication, protein-lipid interaction, intracellular signaling, and energy storage.
View Article and Find Full Text PDFIn order to understand the intracellular delivery of drugs and to improve the cell killing efficiency of photosensitizers (PSs) used in photodynamic therapy (PDT), we prepared TyroSphere nanoparticles, which are triblock polymer [poly(ethylene glycol)--oligo(desaminotyrosyltyrosine octyl ester suberate)--poly(ethylene glycol)] aggregates, loaded with amphiphilic porphyrins with either positive (CisDiMPyP) or negative (TPPS) charges. Their physicochemical and photochemical properties were investigated, as well as the efficiency and mechanism of PDT death in a cervical cancer cell line (HeLa). The photophysical properties of both PSs were improved when loaded in the nanocarrier, with a decrease in aggregation as well as an increase in the yield of singlet oxygen generation.
View Article and Find Full Text PDFPhotochem Photobiol Sci
May 2020
Hypericin (Hyp) is considered a promising photosensitizer for Photodynamic Therapy (PDT), due to its high hydrophobicity, affinity for cell membranes, low toxicity and high photooxidation activity. In this study, Hyp photophysical properties and photodynamic activity against melanoma B16-F10 cells were optimized using DPPC liposomes (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) as a drug delivery system. This nanoparticle is used as a cell membrane biomimetic model and solubilizes hydrophobic drugs.
View Article and Find Full Text PDFIn this review, we describe how photooxidation changes membrane properties that can ultimately lead to permanent membrane damage. Lipid photooxidation occurs in the presence of reactive oxygen species such as singlet oxygen and by direct reactions of lipids with a photosensitizer in the excited state. Indeed, lipid oxidation triggers chemical transformations that can alter lipid packing; change the membrane surface area, thickness and elastic modulus; and induce pore formation and phase separation.
View Article and Find Full Text PDFThe search for conditions that maximize the outcome of Photodynamic Therapy (PDT) continues. Recent data indicate that PDT-induced cell death depends more on the specific intracellular location of the photosensitizer (PS) than on any other parameter. Indeed, knowledge of the PS intracellular location allows the establishment of clear relationships between the mechanism of cell death and the PDT efficacy.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
March 2019
Lipid rafts display a lateral heterogeneity forming membrane microdomains that hold a fundamental role on biological membranes and are indispensable to physiological functions of cells. Oxidative stress in cellular environments may cause lipid oxidation, changing membrane composition and organization, thus implying in effects in cell signaling and even loss of homeostasis. The individual contribution of oxidized lipid species to the formation or disruption of lipid rafts in membranes still remains unknown.
View Article and Find Full Text PDFCells challenged by photosensitized oxidations face strong redox stresses and rely on autophagy to either survive or die. However, the use of macroautophagy/autophagy to improve the efficiency of photosensitizers, in terms of inducing cell death, remains unexplored. Here, we addressed the concept that a parallel damage in the membranes of mitochondria and lysosomes leads to a scenario of autophagy malfunction that can greatly improve the efficiency of the photosensitizer to cause cell death.
View Article and Find Full Text PDFMobilization of specific mechanisms of regulated cell death is a promising alternative to treat challenging illness such as neurodegenerative disease and cancer. The use of light to activate these mechanisms may provide a route for target-specific therapies. Two asymmetric porphyrins with opposite charges, the negatively charged TPPS and the positively charged CisDiMPyP were compared in terms of their properties in membrane mimics and in cells.
View Article and Find Full Text PDFIt was evaluated the properties of the xanthene dyes Erythrosin B, Eosin Y and theirs Methyl, Butyl and Decyl ester derivatives as possible photosensitizers (PS) for photodynamic treatments. The more hydrophobic dyes self-aggregate in water/ethanol solutions above 70% water (vol/vol) in the mixture. In buffered water, these PS were encapsulated in Pluronic polymeric surfactants of P-123 and F-127 by two methodologies: direct addition and the thin-film solid dispersion methods.
View Article and Find Full Text PDF