Publications by authors named "Taweesak Sudyoadsuk"

Excited-state intramolecular proton transfer (ESIPT) molecules are promising fluorophores for various applications. Particularly, their self-absorption-free fluorescence properties would make them a perfect choice as emissive materials for organic light-emitting diodes (OLEDs). Nevertheless, to become effective emitters some of their properties need to be altered by structural modifications.

View Article and Find Full Text PDF

Hydroxypropyl cellulose (HPC) is known for its ability to form cholesteric liquid crystalline phases displaying vivid structural colors. However, these vibrant colors tend to fade over time when the material dries. This issue is a major bottleneck to finding practical applications for these materials.

View Article and Find Full Text PDF

Herein, we report the synthesis and characterization of an efficient ambipolar charge-carrier-transporting deep-red fluorophore () based on a donor-acceptor-donor (D-A-D)-type molecule and its application as a non-doped emitter in an organic light-emitting diode (OLED). The fluorophore contains naphtho[2,3-][1,2,5]thiadiazole (Nz) as a strong acceptor unit symmetrically functionalized with -(4-(1,2,2-triphenylvinyl)phenyl)carbazole as a donor and aggregation-induced emission (AIE) luminogen. The experimental (solvatochromic and emission in THF/water mixtures studies) and theoretical investigations prove that retains cooperative hybridized local and charge transfer (HLCT) and weak AIE features.

View Article and Find Full Text PDF

Herein, new deep-blue triplet-triplet annihilation (TTA) molecules, namely 4-(10-(4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenyl)anthracen-9-yl)benzonitrile (TPIAnCN) and 4-(12-(4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenyl)chrysen-6-yl)benzonitrile (TPIChCN), are designed, synthesized, and investigated as emitters for organic light-emitting diodes (OLED). TPIAnCN and TPIChCN are composed of polyaromatic hydrocarbons of anthracene (An) and chrysene (Ch) as the cores functionalized with tetraphenylimidazole (TPI) and benzonitrile (CN) moieties, respectively. The experimental and theoretical results verify their excellent thermal properties, photophysical properties, as well as electrochemical properties.

View Article and Find Full Text PDF

Herein, three hydroxy-tetraphenylimidazole (HPI)-based fluorophores (HPI-TPA, HPI-PCz, and HPI-CzP) are designed and synthesized by disubstituted HPI core with arylamine units of triphenylamine (TPA), phenyl carbazole (PCz), and carbazole phenyl (CzP) at 3,5-positions of the N-phenyl ring of HPI, respectively. Their photophysical properties are theoretically and experimentally examined. HPI-TPA shows a hybridized local and charge transfer (HLCT) excited state characteristic and emits deep blue color via an HLCT mechanism, while both HPI-PCz and HPI-CzP exhibit excited-state intramolecular proton transfer (ESIPT) property and display pure keto form emissions.

View Article and Find Full Text PDF

Most highly efficient thermally activated delayed fluorescence (TADF)-based organic light-emitting diodes (OLEDs) are multi-layer devices fabricated by thermal vacuum evaporation techniques, which are unfavorable for real applications. However, there are only a few reported examples of efficient solution-processed TADF OLEDs, in particular TADF polymer OLEDs. Herein, a series of solution-processable TADF conjugated polymers (PCTXO/PCTXO-F ( = 25, 50 and 75)) were designed and synthesized by copolymerization of 2-(4-(diphenylamino)-phenyl)-9-thioxanthen-9-one-10,10-dioxide (TXO-TPA) as a red/orange emissive TADF unit, 9,9'-((fluorene-9,9-diyl)-bis(octane-8,1-diyl))-bis(3,6-di--butylcarbazole) as host/hole-transporting unit and 2,7--(heptadecan-9-yl)carbazole as a conjugated linker and solubilizing group.

View Article and Find Full Text PDF

Diketopyrrolopyrrole (DPP) pigments are essential and have been intensively exploited as building-blocks for the synthesis of organic semiconducting polymers and small molecules; however, DPP derivatives as emissive materials for electroluminescent (EL) devices have rarely been explored. In this work, a series of new DPP derivatives grafted with carbazole dendrons in a non-conjugated fashion using an amide linkage was designed to improve the performance of DPP in EL devices. Three DPP derivatives (G0DPP, G1DPP and G2DPP) bearing di(-chlorophenyl)-DPP (Pigment Red 254) as the core substituted with a hexyl chain, -hexyl carbazole and -hexyl-'-9,3':6',''-tercarbazole, respectively, were synthesized to afford improved hole-transporting properties without affecting the photophysical and electronic properties of the DPP core.

View Article and Find Full Text PDF

Most metal-organic frameworks (MOFs) lack charge mobility, which is crucial for realizing their use in optoelectronic applications. This work proposes the design of a MOF using triarylamine-based ligands (Zr-NBP) as the lone pair electron spacer to enhance the hole mobility in the MOF while maintaining its luminescent properties. Zr-NBP has strong fluorescence with a good hole mobility of 1.

View Article and Find Full Text PDF

Herein, two deep-blue emissive molecules (SAF-PI and SAF-DPI) are designed and synthesized using spiro[acridine-9,9'-fluorene] as a donor (D) substituted with 2-(3-methylphenyl)-1-phenyl-phenanthro[9,10-d]imidazole as an acceptor (A), forming twisted D-A and A-D-A structures, respectively. The photophysical studies and density functional theory (DFT) calculations reveal that both molecules exhibit hybridized local excited and charge transfer (HLCT) characteristics with deep blue emission color. They are effectively applied as non-doped emitters in OLEDs.

View Article and Find Full Text PDF

Despite the success of thermally activated delayed fluorescent (TADF) materials in steering the next generation of organic light-emitting diodes (OLEDs), effective near infrared (NIR) TADF emitters are still very rare. Here, we present a simple and extremely high electron-deficient compound, 5,6-dicyano[2,1,3]benzothiadiazole (CNBz), as a strong electron-accepting unit to develop a sufficiently strong donor-acceptor (D-A) interaction for NIR emission. End-capping with the electron-donating triphenylamine (TPA) unit created an effective D-A-D type system, giving rise to an efficient NIR TADF emissive molecule (λ =750 nm) with a very small ΔE of 0.

View Article and Find Full Text PDF

Perovskite solar cells (PSCs) have received high attention in the past few years due to their terrific photovoltaic performance and potentially low production cost. However, the use of hole transport materials (HTMs) with hygroscopic dopants, which cause the inevitable instability of device performance, has hampered commercialization. Herein, a dopant-free polymeric HTM with functional aromatic rings was used to optimize the HTM/perovskite interface and employed in a planar n-i-p configuration.

View Article and Find Full Text PDF

Two regioisomers of naphthothiadiazole derivatives with aggregation-induced emission enhancement exhibited a strong solid-state fluorescence emission in the range of 666-760 nm. A non-doped EL device emitted brilliant near infrared emission peaked at 754 nm with a high maximum radiance of 22 050 mW Sr-1 m-2, an EQE as high as 1.48%, and relatively low efficiency roll-off.

View Article and Find Full Text PDF

A single hybrid energy conversion and storage (HECS) cell of alpha-cobalt hydroxide (α-Co(OH)) in ionic liquid was fabricated and operated under light illumination. The α-Co(OH), which is unstable in an aqueous electrolyte (i.e.

View Article and Find Full Text PDF

The search for greater efficiency in organic dye-sensitized solar cells (DSCs) and in their perovskite cousins is greatly aided by a more complete understanding of the spectral and morphological properties of the photoactive layer. This investigation resolves a discrepancy in the observed photoconversion efficiency (PCE) of two closely related DSCs based on carbazole-containing D-π-A organic sensitizers. Detailed theoretical characterization of the absorption spectra, dye adsorption on TiO , and electronic couplings for charge separation and recombination permit a systematic determination of the origin of the difference in PCE.

View Article and Find Full Text PDF

The effects of type and position of π-linker in carbazole-carbazole based dyes on their performance in dye-sensitized solar cells (DSSCs) were investigated by DFT and TDDFT methods. The calculated electronic energy level, electron density composition, charge injection and charge recombination properties were compared with those of the high performance CCT3A dye synthesized recently. It is found that that mixing a benzothiadizole (B) unit with two thiophene (T) units in the π-spacer can greatly shift absorption wavelength to near infrared region and enhance the light harvesting efficiency (LHE) resulting in increasing of short-circuit current density (J), whereas a thienothiophene unit does not affect those properties.

View Article and Find Full Text PDF

In an attempt to shed light on how the addition of a benzothiadiazole (BTD) moiety influences the properties of dyes, a series of newly designed triphenylamine-based sensitizers incorporating a BTD unit as an additional electron-withdrawing group in a specific donor-acceptor-π-acceptor architecture has been investigated. We found that different positions of the BTD unit provided significantly different responses for light absorption. Among these, it was established that the further the BTD unit is away from the donor part, the broader the absorption spectra, which is an observation that can be applied to improve light-harvesting ability.

View Article and Find Full Text PDF

A series of new zinc-porphyrin dyes that contain different meso substituents (phenyl, carbazole phenyl, and carbazole thiophenyl groups) and bithiophenyl cyanoacrylic acid as the π-conjugated anchoring moiety were designed, synthesized, and characterized as sensitizers for dye-sensitized solar cells (DSSCs). The effects of these meso substituents on the properties of the porphyrin dyes were theoretically and experimentally investigated. By meso substitution of the porphyrin ring with carbazole-aryl moieties, the short-circuit current (Jsc ) and open-circuit voltage (Voc ) of the DSSCs were improved as was the power conversion efficiency (η) owing to the influence of both the suppression of dye aggregations and the enhanced charge separation and charge-injection efficiency of the dye to TiO2 films.

View Article and Find Full Text PDF

A series of novel D-π-A type organic dyes, namely, GnTA (n = 1-4), containing carbazole dendrons up to fourth generation as a donor, bithiophene as π-linkage, and cyanoacrylic acid as acceptor were synthesized and characterized for applications in dye-sensitized solar cells (DSSCs). The photophysical, thermal, electrochemical, and photovoltaic properties of the new dyes as dye sensitizers were investigated, and the effects of the carbazole dendritic donors on these properties were evaluated. Results demonstrated that increasing the size or generation of the carbazole dendritic donor of the dye molecules enhances their total light absorption abilities and unluckily reduces the amount of dye uptake per unit TiO2 area because of their high molecular volumes.

View Article and Find Full Text PDF

The electronic structures and photophysical properties of anthracene derivatives as hole-transporting materials (HTM) in OLEDs have been studied by DFT and TD-DFT methods. Thiophene and triphenylamine (TPA) moieties are used as substituents in anthracene based HTMs providing FATn and FAPn compounds (n=1-2), respectively. The calculated electronic levels by B3LYP show proper energy matching of FAPn and hole-injecting layer (HIL), indicating that the hole-transports of the FAPn compounds are better than the FATn compounds.

View Article and Find Full Text PDF

A series of novel red-emitting bis[5-(fluoren-2-yl)thiophen-2-yl]benzothiadiazole-cored dendrimers containing carbazole dendrons up to the third generation are synthesized. Their photophysical, thermal, electrochemical, and electroluminescent properties as nondoped solution-processed red light-emitters for OLEDs are investigated. By using carbazole dendrons as the end caps, we are able to reduce the crystallization and retain the high emissive ability of a planar fluorescent core in the solid state as well as improve the thermal stability of the material.

View Article and Find Full Text PDF

A series of bis(3,6-di-tert-butylcarbazol-9-ylphenyl)aniline end-capped oligoarylenes, BCPA-Ars, are synthesized by double palladium-catalyzed cross-coupling reactions. By using this bis(carbazol-9-yl)triphenylamine moiety as an end-cap, we are able to reduce the crystallization and retain the high-emission ability of these planar fluorescent oligoarylene cores in the solid state, as well as improve the amorphous stability and solubility of the materials. The results of optical and electrochemical studies show that their HOMOs, LUMOs, and energy gaps can be easily modified or fine-tuned by either varying the degree of π-conjugation or using electron affinities of the aryl cores which include fluorene, oligothiophenes, 2,1,3-benzothiadiazole, 4,7-diphenyl-4-yl-2,1,3-benzothiadiazole, and 4,7-dithien-2-yl-2,1,3-benzothiadiazole.

View Article and Find Full Text PDF

Bis(fluorenyl)benzothiadiazole-cored carbazole dendrimers show high thermal and electrochemical stability, and great potential as solution processed hole-transporting non-doped green emitters for OLEDs. A pure green device with CIE coordinates of (0.27, 0.

View Article and Find Full Text PDF

New carbazole-triphenylamine end-capped di(thiophen-2-yl)benzothiadiazole showed high thermal and electrochemical stability, and great potential as a solution processed hole-transporting non-doped red emitter for OLEDs. A pure red device with CIE coordinates and a high luminance efficiency of (0.66, 0.

View Article and Find Full Text PDF

The ground-state structure and frontier molecular orbital of D-π-A organic dyes, CFT1A, CFT2A, and CFT1PA were theoretically investigated using density functional theory (DFT) on B3LYP functional with 6-31G(d,p) basis set. The vertical excitation energies and absorption spectra were obtained using time-dependent DFT (TD-DFT). The adsorptions of these dyes on TiO(2) anatase (101) were carried out by using a 38[TiO(2)] cluster model using Perdew-Burke-Ernzerhof functional with the double numerical basis set with polarization (DNP).

View Article and Find Full Text PDF

Carbazole dendrimers up to 4th generation were synthesized. They showed significantly high T(g), amorphous and stable electrochemical properties, and great potential as solution processed hole-transporting materials for OLEDs. Alq3-based green devices exhibited high luminance efficiency and CIE coordinates of 4.

View Article and Find Full Text PDF