Persister cells, rare phenotypic variants that survive normally lethal levels of antibiotics, present a major barrier to clearing bacterial infections. However, understanding the precise physiological state and genetic basis of persister formation has been a longstanding challenge. Here we generated a high-resolution single-cell RNA atlas of Escherichia coli growth transitions, which revealed that persisters from diverse genetic and physiological models converge to transcriptional states that are distinct from standard growth phases and instead exhibit a dominant signature of translational deficiency.
View Article and Find Full Text PDFDespite the critical importance of essential genes, systems-level investigations of their contribution to antibiotic sensitivity have been limited. Using CRISPR Adaptation-mediated Library Manufacturing (CALM), we generated ultra-dense CRISPR interference (CRISPRi) libraries in methicillin-sensitive and -resistant strains of Staphylococcus aureus, which allowed us to quantify gene fitness on a global scale across ten clinically relevant antibiotics. This led to the identification of a comprehensive set of known and novel biological processes modulating bacterial fitness in the antibiotics.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is an increasingly diagnosed cancer that kills 90% of afflicted patients, with most patients receiving palliative chemotherapy. We identified neuronal pentraxin 1 (NPTX1) as a cancer-secreted protein that becomes overexpressed in human and murine PDAC cells during metastatic progression and identified adhesion molecule with Ig-like domain 2 (AMIGO2) as its receptor. Molecular, genetic, biochemical, and pharmacologic experiments revealed that secreted NPTX1 acts cell-autonomously on the AMIGO2 receptor to drive PDAC metastatic colonization of the liver-the primary site of PDAC metastasis.
View Article and Find Full Text PDFRecent research has indicated the presence of heterochromatin-like regions of extended protein occupancy and transcriptional silencing of bacterial genomes. We utilized an integrative approach to track chromatin structure and transcription in K-12 across a wide range of nutrient conditions. In the process, we identified multiple loci which act similarly to facultative heterochromatin in eukaryotes, normally silenced but permitting expression of genes under specific conditions.
View Article and Find Full Text PDFIn this issue of Molecular Cell, Yang et al. find that arginine-to-cysteine substitutants are enriched in a subset of lung cancer proteomes, potentiated by arginine deprivation, and promote resistance to chemotherapy.
View Article and Find Full Text PDFThe dominant risk factors for late-onset Alzheimer's disease (AD) are advanced age and the APOE4 genetic variant. To examine how these factors alter neuroimmune function, we generated an integrative, longitudinal single-cell atlas of brain immune cells in AD model mice bearing the three common human APOE alleles. Transcriptomic and chromatin accessibility analyses identified a reactive microglial population defined by the concomitant expression of inflammatory signals and cell-intrinsic stress markers whose frequency increased with age and APOE4 burden.
View Article and Find Full Text PDFNat Rev Cancer
November 2023
Transfer RNAs (tRNAs) have been historically viewed as non-dynamic adaptors that decode the genetic code into proteins. Recent work has uncovered dynamic regulatory roles for these fascinating molecules. Advances in tRNA detection methods have revealed that specific tRNAs can become modulated upon DNA copy number and chromatin alterations and can also be perturbed by oncogenic signalling and transcriptional regulators in cancer cells or the tumour microenvironment.
View Article and Find Full Text PDFUnlabelled: Efficient communication between mitochondria and the nucleus underlies homoeostatic metabolic control, though the involved mitochondrial factors and their mechanisms are poorly defined. Here, we report the surprising detection of multiple mitochondrial-derived transfer RNAs (mito-tRNAs) within the nuclei of human cells. Focused studies of nuclear-transported mito-tRNA-asparagine (mtAsn) revealed that its cognate charging enzyme (NARS2) is also present in the nucleus.
View Article and Find Full Text PDFUnlabelled: The secreted lipid transporter apolipoprotein E (APOE) plays important roles in atherosclerosis and Alzheimer's disease and has been implicated as a suppressor of melanoma progression. The APOE germline genotype predicts human melanoma outcomes, with APOE4 and APOE2 allele carriers exhibiting prolonged and reduced survival, respectively, relative to APOE3 homozygotes. While the APOE4 variant was recently shown to suppress melanoma progression by enhancing antitumor immunity, further work is needed to fully characterize the melanoma cell-intrinsic effects of APOE variants on cancer progression.
View Article and Find Full Text PDFPrecision oncology promises accurate prediction of disease trajectories by utilizing molecular features of tumors. We present a systematic analysis of the prognostic potential of diverse molecular features across large cancer cohorts. We find that the mRNA expression of biologically coherent sets of genes (modules) is substantially more predictive of patient survival than single-locus genomic and transcriptomic aberrations.
View Article and Find Full Text PDFUtilization of specific codons varies significantly across organisms. Cancer represents a model for understanding DNA sequence evolution and could reveal causal factors underlying codon evolution. We found that across human cancer, arginine codons are frequently mutated to other codons.
View Article and Find Full Text PDFPatients with primary mitochondrial oxidative phosphorylation (OxPhos) defects present with fatigue and multi-system disorders, are often lean, and die prematurely, but the mechanistic basis for this clinical picture remains unclear. By integrating data from 17 cohorts of patients with mitochondrial diseases (n = 690) we find evidence that these disorders increase resting energy expenditure, a state termed hypermetabolism. We examine this phenomenon longitudinally in patient-derived fibroblasts from multiple donors.
View Article and Find Full Text PDFUtilization of specific codons varies between organisms. Cancer represents a model for understanding DNA sequence evolution and could reveal causal factors underlying codon evolution. We found that across human cancer, arginine codons are frequently mutated to other codons.
View Article and Find Full Text PDFThe human genome contains 61 codons encoding 20 amino acids. Synonymous codons representing a given amino acid are decoded by a set of transfer RNAs (tRNAs) called isoacceptors. We report the surprising observation that two isoacceptor tRNAs that decode synonymous codons become modulated in opposing directions during breast cancer progression.
View Article and Find Full Text PDFThymidine starvation causes rapid cell death. This enigmatic process known as thymineless death (TLD) is the underlying killing mechanism of diverse antimicrobial and antineoplastic drugs. Despite decades of investigation, we still lack a mechanistic understanding of the causal sequence of events that culminate in TLD.
View Article and Find Full Text PDFClinical outcomes of severe acute respiratory syndrome 2 (SARS-CoV-2) infection are highly heterogeneous, ranging from asymptomatic infection to lethal coronavirus disease 2019 (COVID-19). The factors underlying this heterogeneity remain insufficiently understood. Genetic association studies have suggested that genetic variants contribute to the heterogeneity of COVID-19 outcomes, but the underlying potential causal mechanisms are insufficiently understood.
View Article and Find Full Text PDFStress-induced cleavage of transfer RNAs (tRNAs) into tRNA-derived fragments (tRFs) occurs across organisms from yeast to humans; yet, its mechanistic underpinnings and pathological consequences remain poorly defined. Small RNA profiling revealed increased abundance of a cysteine tRNA fragment (5'-tRF) during breast cancer metastatic progression. 5'-tRF was required for efficient breast cancer metastatic lung colonization and cancer cell survival.
View Article and Find Full Text PDFMetastatic colonization is the primary cause of death from colorectal cancer (CRC). We employed genome-scale in vivo short hairpin RNA (shRNA) screening and validation to identify 26 promoters of CRC liver colonization. Among these genes, we identified a cluster that contains multiple targetable genes, including ITPR3, which promoted liver-metastatic colonization and elicited similar downstream gene expression programs.
View Article and Find Full Text PDFInterferon signaling mediates resistance to immune checkpoint blockade therapy, but the underlying mechanisms are poorly understood. In this issue of Immunity, Cucolo et al. identify RIPK1 as an interferon-stimulated gene with potent effects on cell extrinsic and intrinsic immunotherapy resistance.
View Article and Find Full Text PDF