Although several porous carbon/graphene nanoribbons (GNRs) have been prepared, a direct comparison of the electronic properties between a nonporous GNR and its periodically perforated counterpart is still missing. Here, we report the synthesis of porous 12-atom-wide armchair-edged GNRs from a bromoarene precursor on a Au(111) surface via hierarchical Ullmann and dehydrogenative coupling. The selective formation of porous 12-GNRs was achieved through thermodynamic and kinetic reaction control combined with tailored precursor design.
View Article and Find Full Text PDFThe detection of faint magnetic fields from single-electron and nuclear spins at the atomic scale is a long-standing challenge in physics. While current mobile quantum sensors achieve single-electron spin sensitivity, atomic spatial resolution remains elusive for existing techniques. Here we fabricate a single-molecule quantum sensor at the apex of the metallic tip of a scanning tunnelling microscope by attaching Fe atoms and a PTCDA (3,4,9,10-perylenetetracarboxylic-dianhydride) molecule to the tip apex.
View Article and Find Full Text PDFThe discrete and charge-separated nature of matter - electrons and nuclei - results in local electrostatic fields that are ubiquitous in nanoscale structures and relevant in catalysis, nanoelectronics and quantum nanoscience. Surface-averaging techniques provide only limited experimental access to these potentials, which are determined by the shape, material, and environment of the nanostructure. Here, we image the potential over adatoms, chains, and clusters of Ag and Au atoms assembled on Ag(111) and quantify their surface dipole moments.
View Article and Find Full Text PDFA high-current electron source for inverse photoemission spectroscopy is described. The source comprises a thermal cathode electron emission system, an electrostatic deflector-monochromator, and a lens system for variable kinetic energy (1.6-20 eV) at the target.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
July 2023
A bold vision in nanofabrication is the assembly of functional molecular structures using a scanning probe microscope (SPM). This approach requires continuous monitoring of the molecular configuration during manipulation. Until now, this has been impossible because the SPM tip cannot simultaneously act as an actuator and an imaging probe.
View Article and Find Full Text PDFStudying inorganic/organic hybrid systems is a stepping stone towards the design of increasingly complex interfaces. A predictive understanding requires robust experimental and theoretical tools to foster trust in the obtained results. The adsorption energy is particularly challenging in this respect, since experimental methods are scarce and the results have large uncertainties even for the most widely studied systems.
View Article and Find Full Text PDFPolycyclic aromatic compounds with fused benzene rings offer an extraordinary versatility as next-generation organic semiconducting materials for nanoelectronics and optoelectronics due to their tunable characteristics, including charge-carrier mobility and optical absorption. Nonplanarity can be an additional parameter to customize their electronic and optical properties without changing the aromatic core. In this work, we report a combined experimental and theoretical study in which we directly observe large, geometry-induced modifications in the frontier orbitals of a prototypical dye molecule when adsorbed on an atomically thin dielectric interlayer on a metallic substrate.
View Article and Find Full Text PDFWhen a molecule interacts chemically with a metal surface, the orbitals of the molecule hybridise with metal states to form the new eigenstates of the coupled system. Spatial overlap and energy matching are determining parameters of the hybridisation. However, since every molecular orbital does not only have a characteristic spatial shape, but also a specific momentum distribution, one may additionally expect a momentum matching condition; after all, each hybridising wave function of the metal has a defined wave vector, too.
View Article and Find Full Text PDFTracing the modifications of molecules in surface chemical reactions benefits from the possibility to image their orbitals. While delocalized frontier orbitals with π character are imaged routinely with photoemission orbital tomography, they are not always sensitive to local chemical modifications, particularly the making and breaking of bonds at the molecular periphery. For such bonds, σ orbitals would be far more revealing.
View Article and Find Full Text PDFMolecular nanofabrication with a scanning probe microscope (SPM) is a promising route toward the prototyping of metastable functional molecular structures and devices which do not form spontaneously. The aspect of mechanical stability is crucial for such structures, especially if they extend into the third dimension vertical to the surface. A prominent example is freestanding molecules fabricated on a metal which can function as field emitters or electric field sensors.
View Article and Find Full Text PDFJ Phys Chem C Nanomater Interfaces
March 2022
Hexacene, composed of six linearly fused benzene rings, is an organic semiconductor material with superior electronic properties. The fundamental understanding of the electronic and chemical properties is prerequisite to any possible application in devices. We investigate the orientation and interface properties of highly ordered hexacene monolayers on Ag(110) and Cu(110) with X-ray photoemission spectroscopy (XPS), photoemission orbital tomography (POT), X-ray absorption spectroscopy (XAS), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT).
View Article and Find Full Text PDFMulti-tip scanning tunneling microscopy (STM) is a powerful method to perform charge transport measurements at the nanoscale. With four STM tips positioned on the surface of a sample, four-point resistance measurements can be performed in dedicated geometric configurations. Here, we present an alternative to the most often used scanning electron microscope imaging to infer the corresponding tip positions.
View Article and Find Full Text PDFThe part-by-part assembly of functional nanoscale machinery is a central goal of nanotechnology. With the recent fabrication of an isolated standing molecule with a scanning probe microscope, the third dimension perpendicular to the surface will soon become accessible to molecule-based construction. Beyond the flatlands of the surface, a wealth of structures and functionalities is waiting for exploration, but issues of stability are becoming more critical.
View Article and Find Full Text PDFWe present the design and performance of an ultra-high vacuum scanning tunneling microscope (STM) that uses adiabatic demagnetization of electron magnetic moments for controlling its operating temperature ranging between 30 mK and 1 K with an accuracy of up to 7 μK rms. At the same time, high magnetic fields of up to 8 T can be applied perpendicular to the sample surface. The time available for STM experiments at 50 mK is longer than 20 h, at 100 mK about 40 h.
View Article and Find Full Text PDFDetermination of the molecular Kondo temperature () poses a challenge in most cases when the experimental temperature cannot be tuned to a sufficient extent. We show how this ambiguity can be resolved if additional control parameters are present, such as magnetic field and mechanical gating. We record the evolution of the differential conductance by lifting an individual molecule from the metal surface with the tip of a scanning tunneling microscope.
View Article and Find Full Text PDFAngew Chem Weinheim Bergstr Ger
March 2021
J Phys Chem C Nanomater Interfaces
February 2021
Longer acenes such as heptacene are promising candidates for optoelectronic applications but are unstable in their bulk structure as they tend to dimerize. This makes the growth of well-defined monolayers and films problematic. In this article, we report the successful preparation of a highly oriented monolayer of heptacene on Ag(110) by thermal cycloreversion of diheptacenes.
View Article and Find Full Text PDFFrontier orbitals determine fundamental molecular properties such as chemical reactivities. Although electron distributions of occupied orbitals can be imaged in momentum space by photoemission tomography, it has so far been impossible to follow the momentum-space dynamics of a molecular orbital in time, for example, through an excitation or a chemical reaction. Here, we combined time-resolved photoemission using high laser harmonics and a momentum microscope to establish a tomographic, femtosecond pump-probe experiment of unoccupied molecular orbitals.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2021
Metalation and self-metalation reactions of porphyrins on oxide surfaces have recently gained interest. The mechanism of porphyrin self-metalation on oxides is, however, far from being understood. Herein, we show by a combination of results obtained with scanning tunneling microscopy, photoemission spectroscopy, and DFT computations, that the self-metalation of 2H-tetraphenylporphyrin on the surface of ultrathin MgO(001) films is promoted by charge transfer.
View Article and Find Full Text PDFWe revisit the question of kekulene's aromaticity by focusing on the electronic structure of its frontier orbitals as determined by angle-resolved photoemission spectroscopy. To this end, we have developed a specially designed precursor, 1,4,7(2,7)-triphenanthrenacyclononaphane-2,5,8-triene, which allows us to prepare sufficient quantities of kekulene of high purity directly on a Cu(111) surface, as confirmed by scanning tunneling microscopy. Supported by density functional calculations, we determine the orbital structure of kekulene's highest occupied molecular orbital by photoemission tomography.
View Article and Find Full Text PDFBeilstein J Nanotechnol
October 2020
Ultrathin dielectric/insulating films on metals are often used as decoupling layers to allow for the study of the electronic properties of adsorbed molecules without electronic interference from the underlying metal substrate. However, the presence of such decoupling layers may effectively change the electron donating properties of the substrate, for example, by lowering its work function and thus enhancing the charging of the molecular adsorbate layer through electron tunneling. Here, an experimental study of the charging of -sexiphenyl (6P) on ultrathin MgO(100) films supported on Ag(100) is reported.
View Article and Find Full Text PDFWe report the use of a surfactant molecule during the epitaxy of graphene on SiC(0001) that leads to the growth in an unconventional orientation, namely R0° rotation with respect to the SiC lattice. It yields a very high-quality single-layer graphene with a uniform orientation with respect to the substrate, on the wafer scale. We find an increased quality and homogeneity compared to the approach based on the use of a preoriented template to induce the unconventional orientation.
View Article and Find Full Text PDFThe ability to handle single molecules as effectively as macroscopic building blocks would enable the construction of complex supramolecular structures inaccessible to self-assembly. The fundamental challenges obstructing this goal are the uncontrolled variability and poor observability of atomic-scale conformations. Here, we present a strategy to work around both obstacles and demonstrate autonomous robotic nanofabrication by manipulating single molecules.
View Article and Find Full Text PDFOne of the hallmarks of topological insulators (TIs), the intrinsic spin polarisation in the topologically protected surface states, is investigated at room temperature in-situ by means of four-probe scanning tunnelling microscopy (STM) for a BiSbTe thin film. To achieve the required precision of tip positions for measuring a spin signal, a precise positioning method employing STM scans of the local topography with each individual tip is demonstrated. From the transport measurements, the spin polarisation in the topological surface states (TSS) is estimated as p ~ 0.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2019
The electronic and geometric structures of tetracene films on Ag(110) and Cu(110) have been studied with photoemission tomography and compared to that of pentacene. Despite similar energy level alignment of the two oligoacenes on these surfaces revealed by conventional ultraviolet photoelectron spectroscopy, the momentum-space resolved photoemission tomography reveals a significant difference in both structural and electronic properties of tetracene and pentacene films. Particularly, the saturated monolayer of tetracene on Ag(110) is found to consist of two molecular species that, despite having the same orientation, are electronically very different-while one molecule remains neutral, another is charged because of electron donation from the substrate.
View Article and Find Full Text PDF