Publications by authors named "Tauqir A Sherazi"

Background/objectives: As a primary source of mortality and disability, bacterial infections continue to develop a severe threat to humanity. Nuclear medicine imaging (NMI) is known for its promising potential to diagnose deep-seated bacterial infections. This work aims to develop a new technetium-99m (Tc) labeled tigecycline radiopharmaceutical as an infection imaging agent.

View Article and Find Full Text PDF

Developing non-precious nanostructured electrocatalysts, exhibiting high catalytic activity in combination with excellent stability, has an enormous potential to replace noble-metal-based catalysts for Hydrogen production through electrochemical water splitting. In this study, a facile method is used for the synthesis of three different hierarchical nanostructures of nickel sulfide (NiS) including nanosheets, nanorods, and multiconnected nanorods that are directly grown on 3D nickel foam (NF). These nanostructured electrocatalysts are evaluated for electrochemical water splitting in alkaline media using four different concentrations to understand the effect of nanostructure and ion concentration on the efficiency.

View Article and Find Full Text PDF

Multi-drug resistant bacteria sometimes known as "superbugs" developed through overuse and misuse of antibiotics are determined to be sensitive to small concentrations of silver nanoparticles. Various methods and sources are under investigation for the safe and efficient synthesis of silver nanoparticles having effective antibacterial activity even at low concentrations. We used a medicinal plant named Salvia moorcroftiana to extract phytochemicals with antibacterial, antioxidant, and reducing properties.

View Article and Find Full Text PDF

Plant-based nanoparticles can be tuned through the frequency of light for efficient synthesis, structural properties, and antibacterial applications. This research assessed the effect of material type (callus and whole-plant extract) and the interaction with a specific range of light wavelength on AgNP synthesis. All types of AgNPs were characterized by their size, shape, associated functional groups, and surface charge.

View Article and Find Full Text PDF

Ertapenem is a member of carbapenem antibiotics used for the treatment of moderate-to-severe intra-abdominal, urinary tract, acute pelvic, and post-surgical gynecologic infections. The antibacterial activity of ertapenem is mediated through binding to penicillin-binding proteins which results in inhibiting the cross-linking of the peptidoglycan layer of the bacterial cell wall. Therefore, ertapenem can be labeled with technetium-99m (Tc), a gamma emitter radionuclide, for the diagnosis of deep-seated bacterial infections, such as urinary tract, intra-abdominal, osteomyelitis, and post-surgical gynecologic infections.

View Article and Find Full Text PDF

An innovative tactic to prepare porous organic polymer membranes was developed via interfacial azo-coupling polymerization. The membranes possess plentiful anchoring sites for loading Pd nanoparticles, and served as a membrane reactor, which exhibits high-performance catalytic reduction with a flux of 27.3 t m day and good long-term stability due to almost zero Pd leaching.

View Article and Find Full Text PDF

A novel liquid-infused, patterned, porous membrane system with anti-fouling characteristics is prepared via simple co-infusion of oil and water within hydrophobic and superhydrophilic surfaces of a porous membrane, respectively. This membrane simultaneously repels the immiscible water and oil exhibiting excellent interfacial floatability at the oil-water interface as a separator, thus showing promise for use in applications in the immiscible oil/water separation industry and liquid-liquid extraction.

View Article and Find Full Text PDF

A quenching based apta-sensing platform was developed for the detection of Patulin. Three different aptamer sequences were studied to screen the aptamer with the maximum affinity towards Patulin. Carboxyfluorescein (CFL) was used as a fluorescent dye while -COOH functionalized multiwall carbon nanotubes (MWCNTs) were applied as novel nanoquenchers.

View Article and Find Full Text PDF

A novel liquid-based Janus porous membrane system was developed through the simple infusion of water and oil within different surfaces. This generates a stable liquid-infusion interface that repels immiscible organic solvents and water, and itself floats at the oil/water interface as a separator. The developed membrane successfully acts as a simple alternative for high-performance liquid separation.

View Article and Find Full Text PDF

In the present work, an aptasensing platform was developed for the detection of a carcinogenic mycotoxin termed patulin (PAT) using a label-free approach. The detection was mainly based on a specific interaction of an aptamer immobilized on carbon-based electrode. A long linear spacer of carboxy-amine polyethylene glycol chain (PEG) was chemically grafted on screen-printed carbon electrodes (SPCEs) via diazonium salt in the aptasensor design.

View Article and Find Full Text PDF

Thymidine phosphorylase (TP) is over expressed in several solid tumors and its inhibition can offer unique target suitable for drug discovery in cancer. A series of 1,2,4-triazoles 3a-3l has been synthesized in good yields and subsequently inhibitory potential of synthesized triazoles 3a-3l against thymidine phosphorylase enzyme was evaluated. Out of these twelve analogs five analogues 3b, 3c, 3f, 3l and 3l exhibited a good inhibitory potential against thymidine phosphorylase.

View Article and Find Full Text PDF

The development of functional imaging is a promising strategy for diagnosis and treatment of infectious and cancerous diseases. In this study, epirubicin was developed as a [ Tc]-labeled radiopharmaceutical for the imaging of multi-drug-resistant Staphylococcus aureus infections. The labeling was carried out using sodium pertechnetate (Na TcO ; ~370 MBq).

View Article and Find Full Text PDF

Treatment with radionuclide labeled regulatory peptides is a promising tool in the management of patients with inoperable receptor positive neuroendocrine tumors. Peptide receptor lutetium-177 radionuclide therapy currently has gained ample attention due to high specific accumulation of regulatory peptides at tumor cell surface and promising characteristics of β- and γ-energy photons of lutetium-177 radionuclide. In this study gastrin peptides analogues were labeled with lutetium-177 by subsequent mixing of LuCl (~ 185 MBq), ammonium acetate buffer of 5 pH, gentistic acid, aqueous solution of gastrin peptide analogues (1 mg/mL) and heating the reaction mixture at 98 °C which resulted in high radiochemical yield (> 96%).

View Article and Find Full Text PDF

It is well recognized by the scientific community that the fog can be deposited and transported on asymmetric surfaces, thus numerous efforts have been made to create such surfaces. However, it is still challenging to design a surface capable of fast deposition and rapid transportation simultaneously. Herein, inspired by the asymmetric structure of cactus spines and the cooperative hydrophilic/hydrophobic regions of desert beetles, a superhydrophilic-hydrophobic integrated conical stainless steel needle (SHCSN) is fabricated by a facile method.

View Article and Find Full Text PDF

Diagnosis of deep-seated bacterial infection remains a serious medical challenge. The situation is becoming more severe with the increasing prevalence of bacteria that are resistant to multiple antibiotic classes. Early efforts to develop imaging agents for infection, such as technetium-99m (Tc) labeled leukocytes, were encouraging, but they failed to differentiate between bacterial infection and sterile inflammation.

View Article and Find Full Text PDF

Small molecule toxins such as mycotoxins with low molecular weight are the most widely studied biological toxins. These biological toxins are responsible for food poisoning and have the potential to be used as biological warfare agents at the toxic dose. Due to the poisonous nature of mycotoxins, effective analysis techniques for quantifying their toxicity are indispensable.

View Article and Find Full Text PDF

Natural resources right from the beginning of the human civilization has paved the way to human being to combat different challenges. The big challenge was to safe the human being from diseases and shortage of food. Plants helped the man in both areas very efficiently.

View Article and Find Full Text PDF

Background: Carica papaya is a well known medicinal plant used in the West and Asian countries to cope several diseases. Patients were advised to eat papaya fruit frequently during dengue fever epidemic in Pakistan by physicians. This study was conducted to establish Polyphenols, flavonoids and antioxidant potential profile of extracts of all major parts of the C.

View Article and Find Full Text PDF

Gold nanoparticle-porphyrin assemblies were formed by binding functionalized porphyrins to gold nanoparticles (Au-NPs). Spectroscopic properties of hybrids and binding strength of porphyrins to Au-NPs were observed based on number and type of linker moieties using fluorescence spectroscopy. Binding appears to be dependent on number rather than type of linker moieties present on the porphyrin molecules, as tetraaminophenyl porphyrin shows the highest binding among the molecules we studied and causes agglomeration of nanoparticles due to presence of four linker groups.

View Article and Find Full Text PDF

Radiolabeled neuropeptides are widely investigated to diagnose and therapy of tumors. These peptides get internalization after binding with particular receptors at the surface of cells and finally move to lysosome. Internalization into tumor cells helps in mapping the infected site.

View Article and Find Full Text PDF