Publications by authors named "Taules M"

Von Willebrand Factor (vWF), a 300-kDa plasma protein key to homeostasis, is cleaved at a single site by multi-domain metallopeptidase ADAMTS-13. vWF is the only known substrate of this peptidase, which circulates in a latent form and becomes allosterically activated by substrate binding. Herein, we characterised the complex formed by a competent peptidase construct (AD13-MDTCS) comprising metallopeptidase (M), disintegrin-like (D), thrombospondin (T), cysteine-rich (C), and spacer (S) domains, with a 73-residue functionally relevant vWF-peptide, using nine complementary techniques.

View Article and Find Full Text PDF

Despite the widespread use of antibodies in clinical applications, the precise molecular mechanisms underlying antibody-antigen (Ab-Ag) interactions are often poorly understood. In this study, we exploit the technical features of a typical surface plasmon resonance (SPR) biosensor to dissect the kinetic and thermodynamic components that govern the binding of single-domain Ab or nanobodies to their target antigen, epidermal growth factor (EGF), a key oncogenic protein that is involved in tumour progression. By carefully tuning the experimental conditions and transforming the kinetic data into equilibrium constants, we reveal the complete picture of binding thermodynamics, including the energetics of the complex-formation transition state.

View Article and Find Full Text PDF

α-Macroglobulins (αMs) regulate peptidases, hormones and cytokines. Mediated by peptidase cleavage, they transit between native, intact forms and activated, induced forms. αMs have been studied over decades using authentic material from primary sources, which was limited by sample heterogeneity and contaminants.

View Article and Find Full Text PDF

This study aims to improve our understanding of the interaction between olfactory receptors and odorants to develop highly selective biosensing devices. Natural nanovesicles (NVs) from Saccharomyces cerevisiae, ~100 nm in diameter, carrying either the human OR17-40 or the chimpanzee OR7D4 olfactory receptor (OR) tagged with the c-myc epitope at their N-terminus, are presented as model systems to quantify the interaction between odorant and olfactory receptors. The level of expression of olfactory receptors was determined at individual NVs using a novel competitive ELISA immunoassay comparing the values obtained against those from techniques involving the solubilization of cell membrane proteins and the identification of c-myc-carrying receptors.

View Article and Find Full Text PDF

Background: Allergy to cat epithelia is highly prevalent, being the major recommendation for allergy sufferers its avoidance. However, this is not always feasible. Allergen specific immunotherapy is therefore recommended for these patients.

View Article and Find Full Text PDF

The androgen receptor (AR) plays a crucial role in normal physiology, development and metabolism as well as in the aetiology and treatment of diverse pathologies such as androgen insensitivity syndromes (AIS), male infertility and prostate cancer (PCa). Here we show that dimerization of AR ligand-binding domain (LBD) is induced by receptor agonists but not by antagonists. The 2.

View Article and Find Full Text PDF

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a multifunctional housekeeping protein secreted by pathogens and involved in adhesion and/or virulence. Previously we reported that enterohemorrhagic (EHEC) and enteropathogenic (EPEC) Escherichia coli secrete GAPDH into the culture medium. This bacterial protein binds human plasminogen and fibrinogen and remains associated with Caco-2 cells upon infection.

View Article and Find Full Text PDF

Small peptides containing fewer than 10 amino acids are promising ligand candidates with which to build affinity chromatographic systems for industrial protein purification. The application of combinatorial peptide synthesis strategies greatly facilitates the discovery of suitable ligands for any given protein of interest. Here we sought to identify peptide ligands with affinity for recombinant human erythropoietin (rhEPO), which is used for the treatment of anemia.

View Article and Find Full Text PDF

Preformed Fas ligand (FasL) and APO2 ligand (APO2L)/TNF-related apoptosis-inducing ligand (TRAIL) are stored in the cytoplasm of the human Jurkat T cell line and of normal human T cell blasts. The rapid release of these molecules in their bioactive form is involved in activation-induced cell death. In this study, we show by confocal microscopy that FasL and APO2L/TRAIL are mainly localized in lysosomal-like compartments in these cells.

View Article and Find Full Text PDF

p21(Cip1), first described as an inhibitor of cyclin-dependent kinases, has recently been shown to have a function in the formation of cyclin D-Cdk4 complexes and in their nuclear translocation. The dual behavior of p21(Cip1) may be due to its association with other proteins. Different evidence presented here indicate an in vitro and in vivo interaction of p21(Cip1) with calmodulin: 1) purified p21(Cip1) is able to bind to calmodulin-Sepharose in a Ca(2+)-dependent manner, and this binding is inhibited by the calmodulin-binding domain of calmodulin-dependent kinase II; 2) both molecules coimmunoprecipitate when extracted from cellular lysates; and 3) colocalization of calmodulin and p21(Cip1) can be detected in vivo by electron microscopy immunogold analysis.

View Article and Find Full Text PDF

Although it is known that calmodulin is involved in G1 progression, the calmodulin-dependent G1 events are not well understood. We have analyzed here the role of calmodulin in the activity, the expression, and the intracellular location of proteins involved in G1 progression. The addition of anti-calmodulin drugs to normal rat kidney cells in early G1 inhibited cyclin-dependent kinase 4 (Cdk4) and Cdk2 activities, as well as retinoblastoma protein phosphorylation.

View Article and Find Full Text PDF

The data reported here summarize a series of results which reveal new functions for nuclear calmodulin (CaM). The addition of CaM inhibitors to cultures of proliferating NRK cells blocked the activity of the cyclin-dependent protein kinases 4 (cdk4) and 2 (cdk2), which are enzymes implicated in the progression of G1 and in the onset of DNA replication, respectively. CaM modulates the activity of cdk4 by regulating the nuclear location of both cdk4 and cyclin D, its associated regulatory subunit.

View Article and Find Full Text PDF