Publications by authors named "Taufika Williams"

Introduction: Carotenoids are naturally occurring pigments in plants and are responsible for the orange, yellow, and red color of fruits and vegetables. Carrots are one of the primary dietary sources of carotenoids. The biological activities of carotenoids in higher organisms, including their immunomodulatory activities, are well documented in most tissues but not the large intestine.

View Article and Find Full Text PDF

Background & Aims: Activated CD8 T cells are elevated in Nonalcoholic steatohepatitis (NASH) and are important for driving fibrosis and inflammation. Despite this, mechanisms of CD8 T cell activation in NASH are largely limited. Specific CD8 T cell subsets may become activated through metabolic signals or cytokines.

View Article and Find Full Text PDF

Host-cell proteins (HCPs) are the foremost class of process-related impurities to be controlled and removed in downstream processing steps in monoclonal antibody (mAb) manufacturing. However, some HCPs may evade clearance in multiple purification steps and reach the final drug product, potentially threatening drug stability and patient safety. This study extends prior work on HCP characterization and persistence in mAb process streams by using mass spectrometry (MS)-based methods to track HCPs through downstream processing steps for seven mAbs that were generated by five different cell lines.

View Article and Find Full Text PDF

Mass spectrometry (MS) has steadily moved into the forefront of quantification-centered protein research. Protein cleavage isotope dilution MS is a proven way for quantifying proteins by using an isotope-labeled analogue of a peptide fragment of the parent protein as an internal standard. Parallel reaction monitoring (PRM) has become the approach for such quantification on an Orbitrap-based instrument as it is assumed that the instrument sensitivity is enhanced.

View Article and Find Full Text PDF

Rationale: Discovery proteomics has been popularized to be essential in the investigator's biological toolbox. Many biological problems involve the interplay of multiple organisms. Herein, a bottom-up proteomics workflow was developed to study a system containing multiple organisms to promote a thorough understanding of how each interacts with the others.

View Article and Find Full Text PDF

Chlamydia protein associating with death domains (CADD) is involved in the biosynthesis of -aminobenzoate (pABA), an essential component of the folate cofactor that is required for the survival and proliferation of the human pathogen . The pathway used by for pABA synthesis differs from the canonical multi-enzyme pathway used by most bacteria that relies on chorismate as a metabolic precursor. Rather, recent work showed pABA formation by CADD derives from l-tyrosine.

View Article and Find Full Text PDF

The growth of advanced analytics in manufacturing monoclonal antibodies (mAbs) has highlighted the challenges associated with the clearance of host cell proteins (HCPs). Of special concern is the removal of "persistent" HCPs, including immunogenic and mAb-degrading proteins, that co-elute from the Protein A resin and can escape the polishing steps. Responding to this challenge, we introduced an ensemble of peptide ligands that target the HCPs in Chinese hamster ovary (CHO) cell culture fluids and enable mAb purification via flow-through affinity chromatography.

View Article and Find Full Text PDF

Among the -borne pathogens, , the main aetiological agent of cat scratch disease (CSD), is of increasing comparative biomedical importance. Despite the importance of as an emergent pathogen, prevention of the diseases caused by this agent in cats, dogs and humans mostly relies on the use of ectoparasiticides. A vaccine targeting both flea fitness and pathogen competence is an attractive choice requiring the identification of flea proteins/metabolites with a dual effect.

View Article and Find Full Text PDF

Ependymal cells (ECs) line the ventricular surfaces of the mammalian central nervous system (CNS) and their development is indispensable to structural integrity and functions of the CNS. We previously reported that EC-specific genetic deletion of the myristoylated alanine-rich protein kinase C substrate (Marcks) disrupts barrier functions and elevates oxidative stress and lipid droplet accumulation in ECs causing precocious cellular aging. However, little is known regarding the mechanisms that mediate these changes in ECs.

View Article and Find Full Text PDF

We describe a label-free proteomics protocol for the interrogation of the placental proteome. Step-by-step directions, including tissue cleanup and preparation, proteolytic digestion, nanoLC-MS/MS data collection and data analysis, are provided. The workflow has been applied toward exploring differential protein expression patterns in placentas from women who have been exposed to drugs during pregnancy relative to those who have not.

View Article and Find Full Text PDF

Capture of host cell proteins (HCPs) from cell culture production harvests is critical to ensure the maximum levels specified by international regulatory bodies of product purity for therapeutic monoclonal antibodies (mAbs). Peptide ligands that selectively target the whole spectrum of the HCPs, while letting the mAb product flow through unbound, are an ideal complement to the affinity-based capture step via Protein A chromatography. In this work, we describe the development of HCP-binding peptide ligands, especially focusing on the steps of (1) peptide selection via library screening and (2) quantification of HCP removal via proteomics by mass spectrometry.

View Article and Find Full Text PDF

The clearance of host cell proteins (HCPs) is of crucial importance in biomanufacturing, given their diversity in composition, structure, abundance, and occasional structural homology with the product. The current approach to HCP clearance in the manufacturing of monoclonal antibodies (mAbs) relies on product capture with Protein A followed by removal of residual HCPs in flow-through mode using ion exchange or mixed-mode chromatography. Recent studies have highlighted the presence of "problematic HCP" species, which are either difficult to remove (Group I), can degrade the mAb product (Group II), or trigger immunogenic reactions (Group III).

View Article and Find Full Text PDF

Serenoa repens (saw palmetto) berries are one of the most consumed medicinal herbs in the United States and the wild green variety is used in the initial therapy of benign prostatic hyperplasia (BPH), globally. Use of saw palmetto is approved by the German Commission E, and several clinical trials are underway for evaluation of its efficacy. Exploitation of its habitats and over foraging imperil this plant, which only grows in the wild.

View Article and Find Full Text PDF

We evaluated changes in the striped bass (Morone saxatilis) ovary proteome during the annual reproductive cycle using label-free quantitative mass spectrometry and a novel machine learning analysis based on K-means clustering and support vector machines. Modulated modularity clustering was used to group co-variable proteins into expression modules and Gene Ontology (GO) biological process and KEGG pathway enrichment analyses were conducted for proteins within those modules. We discovered that components of the ribosome along with translation initiation and elongation factors generally decrease as the annual ovarian cycle progresses toward ovulation, concomitant with a slight increase in components of the 26S-proteasome.

View Article and Find Full Text PDF

The olfactory system of Drosophila melanogaster is one of the best characterized chemosensory systems. Identification of proteins contained in the third antennal segment, the main olfactory organ, has previously relied primarily on immunohistochemistry, and although such studies and in situ hybridization studies are informative, they focus generally on one or few gene products at a time, and quantification is difficult. In addition, purification of native proteins from the antenna is challenging because it is small and encased in a hard cuticle.

View Article and Find Full Text PDF

The coordination-driven self-assembly of two metal-carbonyl-cluster-coordinated dipyridyl donors, (4-C(5)H(4)N)(2)C[triple bond]CCo(2)(CO)(6) (1) and (4-C(5)H(4)N)(2)C[triple bond]CMo(2)Cp(2)(CO)(4) (2), with a linear diplatinum(II) acceptor ligand was investigated. The structures of the resulting self-assembled polygons were found to be controlled by the steric bulk of the metal-carbonyl cluster adduct. The use of a sterically less imposing ligand 1 resulted in a pentagon-hexagon mixture, which was characterized by electrospray ionization time-of-flight mass spectroscopy.

View Article and Find Full Text PDF

We report the development of split-less nano-flow liquid chromatography mass spectrometric analysis of glycans chemically cleaved from glycoproteins in plasma. Porous graphitized carbon operating under reverse-phase conditions and an amide-based stationary phase operating under hydrophilic interaction conditions are quantitatively compared for glycan separation. Both stationary phases demonstrated similar column efficiencies and excellent retention time reproducibility without an internal standard to correct for retention time shift.

View Article and Find Full Text PDF

Operation of any mass spectrometer requires implementation of mass calibration laws to translate experimentally measured physical quantities into a m/z range. While internal calibration in Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) offers several attractive features, including exposure of calibrant and analyte ions to identical experimental conditions (e.g.

View Article and Find Full Text PDF

Recent investigations have implicated aberrant glycosylations in various malignancies, including epithelial ovarian cancer (EOC). The protocol here identifies O-linked carbohydrate patterns in EOC plasma glycoproteins through chemical cleavage and purification of these glycans. Dialyzed plasma is subjected to reductive beta-elimination with alkaline borohydride to release O-linked oligosaccharides from glycoproteins.

View Article and Find Full Text PDF

Posttranslational modifications such as glycosylation can play a fundamental role in signaling pathways that transform an ordinary cell into a malignant one. The development of a protocol to detect these changes in the preliminary stages of disease can lead to a sensitive and specific diagnostic for the early detection of malignancies such as ovarian cancer in which differential glycan patterns are linked to etiology and progression. Small variations in instrument parameters and sample preparation techniques are known to have significant influence on the outcome of an experiment.

View Article and Find Full Text PDF

We report the use of desorption electrospray ionization hybrid Fourier transform ion cyclotron resonance mass spectrometry (DESI-FT-ICR-MS) for the analysis of carbohydrates. Spectra of neat carbohydrates are presented along with their mass measurement accuracies and limits of detection. Furthermore, a comparison is made between the analyses of O-linked glycans from mucin by DESI-FT-ICR-MS and matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry.

View Article and Find Full Text PDF

Cancer research in recent years has immensely benefited from the development of novel technologies that enable scientists to perform detailed investigations of genomes, transcriptomes, proteomes, and metabolomes. This has invariably furthered knowledge of tumorigenesis and etiology of cancer. The resulting information can, in the foreseeable future, effect a significant change in the pace of cancer research, thereby producing improvements in patient care.

View Article and Find Full Text PDF

Sample preparation techniques for carbohydrate analysis using matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) are explored, with particular emphasis on analyte/matrix co-crystallization procedures. While carbohydrates are known to prefer 2,5-dihydroxybenzoic acid (2,5-DHB) as the matrix of choice, these analytes are quite specific about matrix crystal structure, which in turn is dependent on the rate of drying of analyte/matrix spots on the MALDI target. With N-acetylglucosamine (GlcNAc) and N-acetylneuraminic acid (sialic acid or NeuAc) as test monosaccharides, significant increases in ion abundances are demonstrated with 2,5-DHB/NeuAc spots (>10-fold improvement) and 2,5-DHB/GlcNAc spots ( approximately 5-fold improvement) with active drying.

View Article and Find Full Text PDF

Clostridium thermocellum, a cellulolytic, thermophilic anaerobe, has potential for commercial exploitation in converting fibrous biomass to ethanol. However, ethanol concentrations above 1% (w/v) are inhibitory to growth and fermentation, and this limits industrial application of the organism. Recent work with ethanol-adapted strains suggested that protein changes occurred during ethanol adaptation, particularly in the membrane proteome.

View Article and Find Full Text PDF

A novel, Bicine-based SDS-PAGE buffer system was developed for the analysis of membrane proteins. The method involves molecular weight-based separations of fully denatured and solubilized proteins in two dimensions. This doubled SDS-PAGE (dSDS-PAGE) approach produced a diagonal arrangement of protein spots and successfully circumvented problems associated with membrane proteome analysis involving traditional gel-based methods.

View Article and Find Full Text PDF