Publications by authors named "Taubenberger A"

With advances in underlying technologies such as complex multicellular systems, synthetic materials, and bioengineering techniques, we can now generate in vitro miniaturized human tissues that recapitulate the organotypic features of normal or diseased tissues. Importantly, these 3D culture models have increasingly provided experimental access to diverse and complex tissues architectures and their morphogenic assembly in vitro. This review presents an analytical toolbox for biological researchers using 3D modeling technologies through which they can find a collation of currently available methods to phenotypically assess their 3D models in their normal state as well as their response to therapeutic or pathological agents.

View Article and Find Full Text PDF

Mechanical forces provide important signals for normal cell function and pattern formation in developing tissues, and their role has been widely studied during embryogenesis and pathogenesis. Comparatively, little is known of these signals during animal regeneration. The axolotl is an important model organism for the study of regeneration, given its ability to fully restore many organs and tissues after injury, including missing cartilage and bone.

View Article and Find Full Text PDF

Dynamic rearrangements of the F-actin cytoskeleton are a hallmark of tumor metastasis. Thus, proteins that govern F-actin rearrangements are of major interest for understanding metastasis and potential therapies. We hypothesized that the unique F-actin binding and bundling protein SWAP-70 contributes importantly to metastasis.

View Article and Find Full Text PDF

Here, we report the first characterization of the effects resulting from the manipulation of Soluble-Lamin Associated Protein (SLAP) expression during mammalian brain development. We found that SLAP localizes to the nuclear envelope and when overexpressed causes changes in nuclear morphology and lengthening of mitosis. SLAP overexpression in apical progenitors of the developing mouse brain altered asymmetric cell division, neurogenic commitment and neuronal migration ultimately resulting in unbalance in the proportion of upper, relative to deeper, neuronal layers.

View Article and Find Full Text PDF

Vinculin is an integral component of integrin adhesions, where it functions as a molecular clutch coupling intracellular contraction to the extracellular matrix. Quantitating its contribution to the reinforcement of newly forming adhesions, however, requires ultrasensitive cell force assays covering short time and low force ranges. Here, we have combined atomic force microscopy-based single-cell force spectroscopy (SCFS) and optical tweezers force spectroscopy to investigate the role of vinculin in reinforcement of individual nascent adhesions during the first 5 min of cell contact with fibronectin or vitronectin.

View Article and Find Full Text PDF

Cancer progression is associated with extensive remodeling of the tumor microenvironment (TME), resulting in alterations of biochemical and biophysical cues that affect both cancer and stromal cells. In particular, the mechanical characteristics of the TME extracellular matrix undergo significant changes. Bioengineered polymer hydrogels can be instrumental to systematically explore how mechanically changed microenvironments impact cancer cell behavior, including proliferation, survival, drug resistance, and invasion.

View Article and Find Full Text PDF

Adipose tissue expansion involves both differentiation of new precursors and size increase of mature adipocytes. While the two processes are well balanced in healthy tissues, obesity and diabetes type II are associated with abnormally enlarged adipocytes and excess lipid accumulation. Previous studies suggested a link between cell stiffness, volume and stem cell differentiation, although in the context of preadipocytes, there have been contradictory results regarding stiffness changes with differentiation.

View Article and Find Full Text PDF

Breast cancer is a heterogeneous disease and the mechanistic framework for differential osteotropism among intrinsic breast cancer subtypes is unknown. Hypothesizing that cell morphology could be an integrated readout for the functional state of a cancer cell, we established a catalogue of the migratory, molecular and biophysical traits of MDA-MB-231 breast cancer cells, compared it with two enhanced bone-seeking derivative cell lines and integrated these findings with single cell morphology profiles. Such knowledge could be essential for predicting metastatic capacities in breast cancer.

View Article and Find Full Text PDF

Quantitative measurements of physical parameters become increasingly important for understanding biological processes. Brillouin microscopy (BM) has recently emerged as one technique providing the 3D distribution of viscoelastic properties inside biological samples - so far relying on the implicit assumption that refractive index (RI) and density can be neglected. Here, we present a novel method (FOB microscopy) combining BM with optical diffraction tomography and epifluorescence imaging for explicitly measuring the Brillouin shift, RI, and absolute density with specificity to fluorescently labeled structures.

View Article and Find Full Text PDF

Altered biophysical properties of cancer cells and of their microenvironment contribute to cancer progression. While the relationship between microenvironmental stiffness and cancer cell mechanical properties and responses has been previously studied using two-dimensional (2D) systems, much less is known about it in a physiologically more relevant 3D context and in particular for multicellular systems. To investigate the influence of microenvironment stiffness on tumor spheroid mechanics, we first generated MCF-7 tumor spheroids within matrix metalloproteinase (MMP)-degradable 3D polyethylene glycol (PEG)-heparin hydrogels, where spheroids showed reduced growth in stiffer hydrogels.

View Article and Find Full Text PDF

Immune cells process a myriad of biochemical signals but their function and behavior are also determined by mechanical cues. Macrophages are no exception to this. Being present in all types of tissues, macrophages are exposed to environments of varying stiffness, which can be further altered under pathological conditions.

View Article and Find Full Text PDF

The levels of nuclear protein Lamin A/C are crucial for nuclear mechanotransduction. Lamin A/C levels are known to scale with tissue stiffness and extracellular matrix levels in mesenchymal tissues. But in epithelial tissues, where cells lack a strong interaction with the extracellular matrix, it is unclear how Lamin A/C is regulated.

View Article and Find Full Text PDF

Biophysical properties of cells such as intracellular mass density and cell mechanics are known to be involved in a wide range of homeostatic functions and pathological alterations. An optical readout that can be used to quantify such properties is the refractive index (RI) distribution. It has been recently reported that the nucleus, initially presumed to be the organelle with the highest dry mass density (ρ) within the cell, has in fact a lower RI and ρ than its surrounding cytoplasm.

View Article and Find Full Text PDF

Estrogens play an important role in the development and progression of human cancers, particularly in breast cancer. Breast cancer progression depends on the malignant destabilization of adherens junctions (AJs) and disruption of tissue integrity. We found that estrogen receptor alpha (ERα) inhibition led to a striking spatial reorganization of AJs and microclustering of E-Cadherin (E-Cad) in the cell membrane of breast cancer cells.

View Article and Find Full Text PDF

To undergo mitosis successfully, most animal cells need to acquire a round shape to provide space for the mitotic spindle. This mitotic rounding relies on mechanical deformation of surrounding tissue and is driven by forces emanating from actomyosin contractility. Cancer cells are able to maintain successful mitosis in mechanically challenging environments such as the increasingly crowded environment of a growing tumor, thus, suggesting an enhanced ability of mitotic rounding in cancer.

View Article and Find Full Text PDF

Reciprocal interactions between prostate epithelial cells and their adjacent stromal microenvironment not only are essential for tissue homeostasis but also play a key role in tumor development and progression. Malignant transformation is associated with the formation of a reactive stroma where cancer-associated fibroblasts (CAFs) induce matrix remodeling and thereby provide atypical biochemical and biomechanical signals to epithelial cells. Previous work has been focused on the cellular and molecular phenotype as well as on matrix stiffness and remodeling, providing potential targets for cancer therapeutics.

View Article and Find Full Text PDF

When animal cells enter mitosis, they round up to become spherical. This shape change is accompanied by changes in mechanical properties. Multiple studies using different measurement methods have revealed that cell surface tension, intracellular pressure and cortical stiffness increase upon entry into mitosis.

View Article and Find Full Text PDF

The mechanical properties of cancer cells and their microenvironment contribute to breast cancer progression. While mechanosensing has been extensively studied using 2D substrates, much less is known about it in a physiologically more relevant 3D context. Here it is demonstrated that breast cancer tumor spheroids, growing in 3D polyethylene glycol-heparin hydrogels, are sensitive to their environment stiffness.

View Article and Find Full Text PDF

Although label-free cell sorting is desirable for providing pristine cells for further analysis or use, current approaches lack molecular specificity and speed. Here, we combine real-time fluorescence and deformability cytometry with sorting based on standing surface acoustic waves and transfer molecular specificity to image-based sorting using an efficient deep neural network. In addition to general performance, we demonstrate the utility of this method by sorting neutrophils from whole blood without labels.

View Article and Find Full Text PDF

To divide in a tissue, both normal and cancer cells become spherical and mechanically stiffen as they enter mitosis. We investigated the effect of oncogene activation on this process in normal epithelial cells. We found that short-term induction of oncogenic Ras activates downstream mitogen-activated protein kinase (MEK-ERK) signaling to alter cell mechanics and enhance mitotic rounding, so that Ras-expressing cells are softer in interphase but stiffen more upon entry into mitosis.

View Article and Find Full Text PDF

Severe injury to the mammalian spinal cord results in permanent loss of function due to the formation of a glial-fibrotic scar. Both the chemical composition and the mechanical properties of the scar tissue have been implicated to inhibit neuronal regrowth and functional recovery. By contrast, adult zebrafish are able to repair spinal cord tissue and restore motor function after complete spinal cord transection owing to a complex cellular response that includes axon regrowth and is accompanied by neurogenesis.

View Article and Find Full Text PDF

Background: Atomic force microscopy (AFM) allows the mechanical characterization of single cells and live tissue by quantifying force-distance (FD) data in nano-indentation experiments. One of the main problems when dealing with biological tissue is the fact that the measured FD curves can be disturbed. These disturbances are caused, for instance, by passive cell movement, adhesive forces between the AFM probe and the cell, or insufficient attachment of the tissue to the supporting cover slide.

View Article and Find Full Text PDF

Human bone marrow mesenchymal stromal cells (MSCs) are used in clinical trials for the treatment of systemic inflammatory diseases due to their regenerative and immunomodulatory properties. However, intravenous administration of MSCs is hampered by cell trapping within the pulmonary capillary networks. Here, it is hypothesized that traditional 2D plastic-adherent cell expansion fails to result in appropriate morphorheological properties required for successful cell circulation.

View Article and Find Full Text PDF