The motivation to reproduce is a potent natural drive, and the social behaviors that induce it can severely impact animal health and lifespan. Indeed, in males, accelerated aging associated with reproduction arises not from the physical act of courtship or copulation but instead from the motivational drive to court and mate. To better understand the mechanisms underlying social effects on aging, we studied male choosiness for mates.
View Article and Find Full Text PDFIndividuals choose their mates so as to maximize reproductive success, and one important component of this choice is assessment of traits reflecting mate quality. Little is known about why specific traits are used for mate quality assessment nor about how they reflect it. We have previously shown that global manipulation of insulin signaling, a nutrient-sensing pathway governing investment in survival versus reproduction, affects female sexual attractiveness in the fruit fly, Drosophila melanogaster.
View Article and Find Full Text PDFAccording to rational choice theory, beneficial preferences should lead individuals to sort available options into linear, transitive hierarchies, although the extent to which non-human animals behave rationally is unclear. Here we demonstrate that mate choice in the fruit fly Drosophila melanogaster results in the linear sorting of a set of diverse isogenic female lines, unambiguously demonstrating the hallmark of rational behaviour, transitivity. These rational choices are associated with direct benefits, enabling males to maximize offspring production.
View Article and Find Full Text PDFDietary composition is known to have profound effects on many aspects of animal physiology, including lifespan, general health, and reproductive potential. We have previously shown that aging and insulin signaling significantly influence the composition and sexual attractiveness of Drosophila melanogaster female cuticular hydrocarbons (CHCs), some of which are known to be sex pheromones. Because diet is intimately linked to aging and to the activity of nutrient-sensing pathways, we asked how diet affects female CHCs and attractiveness.
View Article and Find Full Text PDFSexually attractive characteristics are often thought to reflect an individual's condition or reproductive potential, but the underlying molecular mechanisms through which they do so are generally unknown. Insulin/insulin-like growth factor signaling (IIS) is known to modulate aging, reproduction, and stress resistance in several species and to contribute to variability of these traits in natural populations. Here we show that IIS determines sexual attractiveness in Drosophila through transcriptional regulation of genes involved in the production of cuticular hydrocarbons (CHC), many of which function as pheromones.
View Article and Find Full Text PDFAttractiveness is a major component of sexual selection that is dependent on sexual characteristics, such as pheromone production, which often reflect an individual's fitness and reproductive potential. Aging is a process that results in a steady decline in survival and reproductive output, yet little is known about its effect on specific aspects of attractiveness. In this report we asked how aging impacts pheromone production and sexual attractiveness in Drosophila melanogaster.
View Article and Find Full Text PDFBiol Rev Camb Philos Soc
May 2008
Sexual selection is a major force driving the evolution of diverse reproductive traits. This evolutionary process is based on individual reproductive advantages that arise either through intrasexual competition or through intersexual choice and conflict. While classical studies of sexual selection focused mainly on differences in male mating success, more recent work has focused on the differences in paternity share that may arise through sperm competition or cryptic female choice whenever females mate with multiple males.
View Article and Find Full Text PDFJ Insect Physiol
January 2007
Sexual selection in both males and females promotes traits and behaviors that allow control over paternity when female mates with multiple males. Nonetheless, mechanisms of cryptic female choice have been consistently overlooked, due to traditional focus on sperm competition as well as difficulty in distinguishing male vs. female influence over processes occurring during and after mating.
View Article and Find Full Text PDFIn animals having internal fertilization, both sexes can potentially influence the post-copulatory processes of sperm transfer, sperm storage and sperm use for fertilization. In this experiment, we investigated whether Tribolium castaneum females can influence male paternity success following consecutive matings with two different males. We compared second male paternity success (P2) between females exposed to carbon dioxide (CO2) and control females kept in air, in both cases for 30 min between two matings.
View Article and Find Full Text PDF