Effects of laser (442 and 532 nm) and light-emitting diode (LED) (650 nm) radiation on mitochondrial respiration and mitochondrial electron transport rate (complexes II-III and IV) in the presence of nitric oxide (NO) were investigated. It was found that nitric oxide (300 nM-10 μM) suppresses mitochondrial respiration. Laser irradiation of mitochondria (442 nm, 3 J cm(-2)) partly restored mitochondrial respiration (approximately by 70 %).
View Article and Find Full Text PDFAmong the photochemical reactions responsible for therapeutic effects of low-power laser radiation, the photolysis of nitrosyl iron complexes of iron-containing proteins is of primary importance. The purpose of the present study was to compare the effects of blue laser radiation on the respiration rate and photolysis of nitrosyl complexes of iron-sulfur clusters (NO-FeS) in mitochondria, subjected to NO as well as the possibility of NO transfer from NO-FeS to hemoglobin. It was shown that mitochondrial respiration in State 3 (V3) and State 4 (V4), according to Chance, dramatically decreased in the presence of 3 mM NO, but laser radiation (λ = 442 nm, 30 J/cm(2)) restored the respiration rates virtually to the initial level.
View Article and Find Full Text PDFRecently, photoacoustic (PA) flow cytometry (PAFC) has been developed for in vivo detection of circulating tumor cells and bacteria targeted by nanoparticles. Here, we propose multispectral PAFC with multiple dyes having distinctive absorption spectra as multicolor PA contrast agents. As a first step of our proof-of-concept, we characterized high-speed PAFC capability to monitor the clearance of three dyes (Indocyanine Green [ICG], Methylene Blue [MB], and Trypan Blue [TB]) in an animal model in vivo and in real time.
View Article and Find Full Text PDF