The complexes of La, Ce, Nd, Sm, Eu, Tb and Yb with benzoxazolyl-phenolate, benzothiazolyl-phenolate, benzoxazolyl-naphtholate, benzothiazolyl-naphtholate and 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedione ligands were treated with n,γ-irradiation upon a sustained (45 h, absorbed dose of 120 krad, flux of neutrons 5·10 n/cm) and a pulse mode (3 ms, absorbed dose of 130 krad, flux of neutrons 3.6·10 n/cm). It was found that main characteristics of the compounds (shape of substance, color, IR absorption and photoluminescent spectra) have not changed.
View Article and Find Full Text PDFA comparative study of the photoluminescence (PL) and radioluminescence (RL) of lanthanide complexes with benzimidazolylphenolate (NON), 4,4,4-trifluoro-1-(2-thienyl)-1,3-butanedionate (TTA) and 1,3-acetylacetonate (acac) ligands revealed significant differences in the total and relative intensity of emission. The PL spectra contain both bands of metal-centered and ligand centred emission while X-ray excited compounds display only the bands of Ln3+ ions, the relative intensity of which differs from that in UV excited analogues. The RL intensity of all the studied complexes is about 300 times lower than that of PL.
View Article and Find Full Text PDFA set of Sc, Nd, Sm, Eu, Ho, Gd, Er, Yb complexes with perfluorinated 2-(benzothiazol-2-yl)phenolate ligands Ln(SON)(DME) were synthesized by the reactions of silylamides Ln[N(SiMe)] with phenol H(SON). The structure of the initial phenol, Sc, and Er complexes was established using X-ray analysis, which revealed that the obtained compounds are mononuclear, in contrast to the binuclear non-fluorinated analogues [Ln(SON)] synthesized earlier. All the obtained complexes, both in solid state and in tetrahydrofuran (THF) solutions, upon excitation by light with λ 395 or 405 nm show intense luminance of the ligands at 440-470 nm.
View Article and Find Full Text PDFHerein, complexes [ZnL] (1), {(HO)Zn(μ-L)Yb[OCH(CF)]} (2), {[(CF)HCO]Zn(μ-L)Yb[OCH(CF)](μ-OH)} (3), and [(HO)Ln(L)] (Ln = Yb (4) and Gd (5)) containing a bridging Schiff-base ligand (HL = N,N'-bis(3-methoxy salicylidene)phenylene-1,2-diamine) were synthesized. The compounds 1-4 were structurally characterized. The ytterbium derivatives 2-4 exhibited bright NIR metal-centred photoluminescence (PL) of Yb ion under one- (λ = 380 nm) and two-photon (λ = 750 nm) excitation.
View Article and Find Full Text PDFA series of lanthanide complexes (Ln = Nd, Sm, Eu, Gd and Yb) with anionic 2-mercaptobenothiazolate (mbt) ligands were synthesized. Depending on the solvents chosen for the synthesis, Ln(mbt)3(THF)2 and Ln(mbt)3(Et2O) complexes were precipitated from THF and Et2O solutions respectively. The structure of Yb(mbt)3(Et2O) was determined by X-ray analysis.
View Article and Find Full Text PDFNew 8-quinolinolate (Q) complexes of yttrium (1) and ytterbium (2) were synthesized by the reactions of Cp3Y and Yb[N(SiMe3)2]3 with 3 equiv. of 8-hydroxyquinoline in a DME solution. Single crystal X-ray analysis revealed the trinuclear molecular structure of the compounds Ln3Q9.
View Article and Find Full Text PDFThe first monomeric anhydrous scandium tris(8-quinolinolate) complex 1 with the 2-amino-8-quinolinolate ligands and the Sc(2)Q(6) dinuclear complex 2 with the unsubstituted 8-quinolinolate ligands have been synthesized and characterized by X-ray analysis and DFT calculations. The intramolecular hydrogen bonds appear to be responsible for the unique monomeric structure of complex 1. The DFT-based analysis of the electron density topology reveals the (3,-1) critical points corresponding to the O···H and N···H bonds.
View Article and Find Full Text PDFThree members of a new class of electroluminescent, neutral, and monomeric scandium N,O-chelate complexes, namely, Sc(III)-tris-2-(2-benzoimidazol-2-yl)phenolate (1), Sc(III)-tris-2-(2-benzoxyazol-2-yl)phenolate (2), and Sc(III)-tris-2-(2-benzothiazol-2-yl)phenolate (3), have been prepared and X-ray characterized. DFT calculations have been performed. In contrast to the most frequently applied dual or multiple dopants in multilayer white OLED devices, all our simpler devices with the configuration of indium tin oxide/N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine/neat scandium complex/Yb exhibit close to near-white emission with a blue hue (CIE(x,y) = 0.
View Article and Find Full Text PDF