Publications by authors named "Tatyana Tsukanova"

Background: Complex anterior skull base defects produced by resection of mass lesions vary in size and configuration and may be extensive. We analyzed the largest single-center series of midline craniofacial lesions extending intra- and extracranially. The study aims at the development of a predictive model for preoperative measurement of the risk of the postoperative cerebrospinal fluid (CSF) leak based on patients' characteristics and surgical plans.

View Article and Find Full Text PDF

In this study, we update the evaluation of the Russian GPT3 model presented in our previous paper in predicting the length of stay (LOS) in neurosurgery. We aimed to assess the performance the Russian GPT-3 (ruGPT-3) language model in LOS prediction using narrative medical records in neurosurgery compared to doctors' and patients' expectations. Doctors appeared to have the most realistic LOS expectations (MAE = 2.

View Article and Find Full Text PDF

Gliomas are the most common neuroepithelial brain tumors, different by various biological tissue types and prognosis. They could be graded with four levels according to the 2007 WHO classification. The emergence of non-invasive histological and molecular diagnostics for nervous system neoplasms can revolutionize the efficacy and safety of medical care and radically reduce healthcare costs.

View Article and Find Full Text PDF

Patients, relatives, doctors, and healthcare providers anticipate the evidence-based length of stay (LOS) prediction in neurosurgery. This study aimed to assess the quality of LOS prediction with the GPT3 language model upon the narrative medical records in neurosurgery comparing to doctors' and patients' expectations. We found no significant difference (p = 0.

View Article and Find Full Text PDF

In this study, we tested the quality of the information extraction algorithm proposed by our group to detect pulmonary embolism (PE) in medical cases through sentence labeling. Having shown a comparable result (F1 = 0.921) to the best machine learning method (random forest, F1 = 0.

View Article and Find Full Text PDF

Our study aimed to compare the capability of different word embeddings to capture the semantic similarity of clinical concepts related to complications in neurosurgery at the level of medical experts. Eighty-four sets of word embeddings (based on Word2vec, GloVe, FastText, PMI, and BERT algorithms) were benchmarked in a clustering task. FastText model showed the best close to the medical expertise capability to group medical terms by their meaning (adjusted Rand index = 0.

View Article and Find Full Text PDF

Unstructured medical text labeling technologies are expected to be highly demanded since the interest in artificial intelligence and natural language processing arises in the medical domain. Our study aimed to assess the agreement between experts who judged on the fact of pulmonary embolism (PE) in neurosurgical cases retrospectively based on electronic health records and assess the utility of the machine learning approach to automate this process. We observed a moderate agreement between 3 independent raters on PE detection (Light's kappa = 0.

View Article and Find Full Text PDF

The automated detection of adverse events in medical records might be a cost-effective solution for patient safety management or pharmacovigilance. Our group proposed an information extraction algorithm (IEA) for detecting adverse events in neurosurgery using documents written in a natural rich-in-morphology language. In this paper, we challenge to optimize and evaluate its performance for the detection of any extremity muscle weakness in clinical texts.

View Article and Find Full Text PDF
Article Synopsis
  • Identifying adverse events in clinical documents is crucial for both retrospective research and monitoring treatment safety and cost-effectiveness.
  • The study proposed semi-automated methods for detecting muscle weakness in preoperative clinical notes, aiming to improve predictions of paresis through images.
  • The combined approach using semi-expert and machine learning methods achieved high sensitivity, specificity, and AUC scores, indicating its effectiveness for creating reliable training datasets for supervised machine learning.
View Article and Find Full Text PDF