Publications by authors named "Tatyana Pozner"

Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to a lack of appropriate human models. Here, we engineered human induced pluripotent stem cell (hiPSC)-derived neuronal lines to express 4R Tau and 4R Tau carrying the P301S MAPT mutation when differentiated into neurons. 4R-P301S neurons display progressive Tau inclusions upon seeding with Tau fibrils and recapitulate features of tauopathy phenotypes including shared transcriptomic signatures, autophagic body accumulation, and reduced neuronal activity.

View Article and Find Full Text PDF

Biallelic loss of SPG11 function constitutes the most frequent cause of complicated autosomal recessive hereditary spastic paraplegia (HSP) with thin corpus callosum, resulting in progressive multisystem neurodegeneration. While the impact of neuroinflammation is an emerging and potentially treatable aspect in neurodegenerative diseases and leukodystrophies, the role of immune cells in SPG11-HSP patients is unknown. Here, we performed a comprehensive immunological characterization of SPG11-HSP, including examination of three human postmortem brain donations, immunophenotyping of patients' peripheral blood cells and patient-specific induced pluripotent stem cell-derived microglia-like cells (iMGL).

View Article and Find Full Text PDF

Tauopathies are age-associated neurodegenerative diseases whose mechanistic underpinnings remain elusive, partially due to lack of appropriate human models. Current human induced pluripotent stem cell (hiPSC)-derived neurons express very low levels of 4-repeat (4R)-tau isoforms that are normally expressed in adult brain. Here, we engineered new iPSC lines to express 4R-tau and 4R-tau carrying the P301S mutation when differentiated into neurons.

View Article and Find Full Text PDF

Pathogenic bi-allelic variants in the SPG11 gene result in rare motor neuron disorders such as Hereditary Spastic Paraplegia type 11, Charcot-Marie Tooth, and Juvenile Amyotrophic Lateral Sclerosis-5. The main challenge in SPG11-linked disease research is the lack of antibodies against SPG11 encoded spatacsin. Here, we describe the CRISPR/Cas9 mediated generation and validation of an endogenously tagged SPG11- human iPSC line that contains an HA tag at the C-terminus of SPG11.

View Article and Find Full Text PDF

Pathogenic variants in are the most frequent cause of autosomal recessive complicated hereditary spastic paraplegia (HSP). In addition to spastic paraplegia caused by corticospinal degeneration, most patients are significantly affected by progressive weakness and muscle wasting due to alpha motor neuron (MN) degeneration. Mitochondria play a crucial role in neuronal health, and mitochondrial deficits were reported in other types of HSPs.

View Article and Find Full Text PDF

Hereditary spastic paraplegia (HSP) is a heterogeneous group of rare motor neuron disorders characterized by progressive weakness and spasticity of the lower limbs. HSP type 11 (SPG11-HSP) is linked to pathogenic variants in the SPG11 gene and it represents the most frequent form of complex autosomal recessive HSP. The majority of SPG11-HSP patients exhibit additional neurological symptoms such as cognitive decline, thin corpus callosum, and peripheral neuropathy.

View Article and Find Full Text PDF

The physico-chemical characteristics of the extracellular matrix (ECM) cause mechanical cues that could elicit responses in the survival rate of cortical neuronal cells. Efficient neurite outgrowth in vitro, is critical for successful cultivation of cortical neuronal cells and the potential for attempts at regeneration of the central nervous system (CNS) in vivo. Relatively soft and hydrophilic, microbially synthesized aromatic polyester, polyhydroxyphenylvalerate (PHPV) was blended 50:50 with the stiff and hydrophobic polycaprolactone (PCL) and electrospun in microfibers for use in a 3D (CellCrown™) configuration and in a 2D coverslip coated configuration.

View Article and Find Full Text PDF

Artificial light at night (ALAN), which disrupts the daily cycle of light, has vast biological impacts on all organisms, and is also associated with several health problems. The few existing studies on neuronal plasticity and cognitive functions in mammals indicate that a disruption of the circadian cycle impairs learning and memory and suppresses neurogenesis. However, nothing is known about the effect of ALAN on neuronal plasticity in birds.

View Article and Find Full Text PDF

Mutations in SPG11 cause a complicated autosomal recessive form of hereditary spastic paraplegia (HSP). Mechanistically, there are indications for the dysregulation of the GSK3β/βCat signaling pathway in SPG11. In this study, we tested the therapeutic potential of the GSK3β inhibitor, tideglusib, to rescue neurodegeneration associated characteristics in an induced pluripotent stem cells (iPSCs) derived neuronal model from SPG11 patients and matched healthy controls as well as a CRISPR-Cas9 mediated SPG11 knock-out line and respective control.

View Article and Find Full Text PDF

Spastic paraplegia gene 11(SPG11)-linked hereditary spastic paraplegia is a complex monogenic neurodegenerative disease that in addition to spastic paraplegia is characterized by childhood onset cognitive impairment, thin corpus callosum and enlarged ventricles. We have previously shown impaired proliferation of SPG11 neural progenitor cells (NPCs). For the delineation of potential defect in SPG11 brain development we employ 2D culture systems and 3D human brain organoids derived from SPG11 patients' iPSC and controls.

View Article and Find Full Text PDF

To date, studies that reported seasonal patterns of adult neurogenesis and neuronal recruitment have correlated them to seasonal behaviors as the cause or as a consequence of neuronal changes. The aim of our study was to test this correlation, and to investigate whether there is a seasonal pattern of new neuronal recruitment that is not correlated to behavior. To do this, we used adult female zebra finches (songbirds that are not seasonal breeders), kept them under constant social, behavioral, and spatial environments, and compared neuronal recruitment in their brains during two seasons, under natural and laboratory conditions.

View Article and Find Full Text PDF