Abscisic acid (ABA) is not only important for plant responses to abiotic stresses, but also plays a key and multifaceted role in plant immunity. In this work, we analyzed the role of ABA in the development of resistance/susceptibility in the wheat ( L.)- Berk.
View Article and Find Full Text PDFLittle information is available on how rhizosphere bacteria affect abscisic acid (ABA) levels in plants and whether these bacterial effects are associated with improved plant water status. In this study, we tested the hypothesis that the stimulation of plant growth may be associated with the ability of ABA to increase the hydraulic conductivity of roots through the up-regulation of aquaporin. To do this, we studied the effect of bacteria capable of producing ABA on a barley mutant deficient in this hormone.
View Article and Find Full Text PDFCytokinins (CKs) and abscisic acid (ABA) play an important role in the life of both plants and pathogenic fungi. However, the role of CKs and ABA in the regulation of fungal growth, development and virulence has not been sufficiently studied. We compared the ability of two virulent isolates (SnB and Sn9MN-3A) and one avirulent isolate (Sn4VD) of the pathogenic fungus Berk.
View Article and Find Full Text PDFBackground: Currently, the role of microRNAs in plant immune responses is being actively studied. Thus, our aim was to research the effect of (Berk.) NEs SnToxA and SnTox3 on the expression of miRNAs involved in the wheat- interaction and to determine the role of phytohormones in this process.
View Article and Find Full Text PDFstrain IB-Ki14 has recently been shown to strengthen the apoplastic barriers of salt-stressed plants, which prevents the entry of toxic sodium. It was of interest to find out whether the same effect manifests itself in the absence of salinity and how this affects the hydraulic conductivity of barley plants. Berberine staining confirmed that the bacterial treatment enhanced the deposition of lignin and suberin and formation of Casparian bands in the roots of barley plants.
View Article and Find Full Text PDFLipid transfer proteins (LTPs) participate in many important physiological processes in plants, including adaptation to stressors, e.g., salinity.
View Article and Find Full Text PDFAn ABA-deficient barley mutant (Az34) and its parental cultivar (Steptoe) were compared. Plants of salt-stressed Az34 (100 mmol m NaCl for 10 days) grown in sand were 40% smaller than those of "Steptoe", exhibited a lower leaf relative water content and lower ABA concentrations. Rhizosphere inoculation with IB22 increased plant growth of both genotypes.
View Article and Find Full Text PDFThe role of reactive oxygen species (ROS) in ABA-induced increase in hydraulic conductivity was hypothesized to be dependent on an increase in aquaporin water channel (AQP) abundance. Single ABA application or its combination with ROS manipulators (ROS scavenger ascorbic acid and NADPH oxidase inhibitor diphenyleneiodonium chloride (DPI)) were studied on detached roots of barley plants. We measured the osmotically driven flow rate of xylem sap and calculated root hydraulic conductivity.
View Article and Find Full Text PDFReactive oxygen species (ROS) play a central role in plant immune responses. The most important virulence factors of the Berk. are multiple fungal necrotrophic effectors (NEs) (SnTox) that affect the redox-status and cause necrosis and/or chlorosis in wheat lines possessing dominant susceptibility genes ().
View Article and Find Full Text PDFEthylene, salicylic acid (SA), and jasmonic acid are the key phytohormones involved in plant immunity, and other plant hormones have been demonstrated to interact with them. The classic phytohormone cytokinins are important participants of plant defense signaling. Crosstalk between ethylene and cytokinins has not been sufficiently studied as an aspect of plant immunity and is addressed in the present research.
View Article and Find Full Text PDFImage segmentation algorithms are critical components of medical image analysis systems. This paper presents a novel and fully automated methodology for segmenting anatomical branching structures in medical images. It is a hybrid approach which integrates the Canny edge detection to obtain a preliminary boundary of the structure and the fuzzy connectedness algorithm to handle efficiently the discontinuities of the returned edge map.
View Article and Find Full Text PDF