Publications by authors named "Tatyana N Safonova"

Orthovanadate was shown to serve as a substrate for nucleoside phosphorylases from Escherichia coli, Shewanella oneidensis, Geobacillus stearothermophilus, and Halomonas chromatireducens AGD 8-3. An exception is thymidine phosphorylase from the extremophilic haloalkaliphilic bacterium Halomonas chromatireducens AGD 8-3, which cannot catalyze the vanadolysis of nucleosides. The kinetic parameters of nucleoside vanadolysis were evaluated.

View Article and Find Full Text PDF

Flavocytochrome c sulfide dehydrogenase from Thioalkalivibrio paradoxus (TpFCC) is a heterodimeric protein consisting of flavin- and monohaem c-binding subunits. TpFCC was co-purified and co-crystallized with the dimeric copper-binding protein TpCopC. The structure of the TpFCC-(TpCopC) complex was determined by X-ray diffraction at 2.

View Article and Find Full Text PDF

Octahaem cytochrome c nitrite reductase from Thioalkalivibrio nitratireducens (TvNiR), like the previously characterized pentahaem nitrite reductases (NrfAs), catalyzes the six-electron reductions of nitrite to ammonia and of sulfite to sulfide. The active site of both TvNiR and NrfAs is formed by the lysine-coordinated haem and His, Tyr and Arg residues. The distinguishing structural feature of TvNiR is the presence of a covalent bond between the CE2 atom of the catalytic Tyr303 and the S atom of Cys305, which might be responsible for the higher nitrite reductase activity of TvNiR compared with NrfAs.

View Article and Find Full Text PDF

The structures of complexes of octahaem cytochrome c nitrite reductase from the bacterium Thioalkalivibrio nitratireducens (TvNiR) with the substrate sulfite (1.4 Å resolution; R(cryst) = 0.126) and the inhibitor cyanide (1.

View Article and Find Full Text PDF