Enzyme-based depolymerization of plastics, including polyesters, has emerged as a promising approach for plastic waste recycling and reducing environmental plastic pollution. Currently, most of the known polyester-degrading enzymes are represented by a few natural and engineered PETases from the carboxylesterase family V. To identify novel groups of polyesterases, we selected 25 proteins from the carboxylesterase family IV, which share 22 % to 80 % sequence identity to the metagenomic thermophilic polyesterase IS12.
View Article and Find Full Text PDFMicrobial communities respond to temperature with physiological adaptation and compositional turnover. Whether thermal selection of enzymes explains marine microbiome plasticity in response to temperature remains unresolved. By quantifying the thermal behaviour of seven functionally-independent enzyme classes (esterase, extradiol dioxygenase, phosphatase, beta-galactosidase, nuclease, transaminase, and aldo-keto reductase) in native proteomes of marine sediment microbiomes from the Irish Sea to the southern Red Sea, we record a significant effect of the mean annual temperature (MAT) on enzyme response in all cases.
View Article and Find Full Text PDFHydrothermal vents are geographically widespread and host microorganisms with robust enzymes useful in various industrial applications. We examined microbial communities and carboxylesterases of two terrestrial hydrothermal vents of the volcanic island of Ischia (Italy) predominantly composed of , , and . High-temperature enrichment cultures with the polyester plastics polyhydroxybutyrate and polylactic acid (PLA) resulted in an increase of and species and to some extent and species.
View Article and Find Full Text PDFMetagenomics offers the possibility to screen for versatile biocatalysts. In this study, the microbial community of the Sorghum bicolor rhizosphere was spiked with technical cashew nut shell liquid, and after incubation, the environmental DNA (eDNA) was extracted and subsequently used to build a metagenomic library. We report the biochemical features and crystal structure of a novel esterase from the family IV, EH, retrieved from an uncultured sphingomonad after a functional screen in tributyrin agar plates.
View Article and Find Full Text PDFIrrigation of fresh produce with poorly treated wastewater or contaminated freshwater sources can lead to produce contamination and foodborne illnesses, as well as the dissemination of antimicrobial resistance determinants. In this study, we assessed the presence of integrons in multidrug-resistant Escherichia coli isolated from the University of Nigeria, Nsukka Wastewater Treatment Plant effluent, tap water, vegetables from irrigated gardens and vegetables sold in selected markets from Nsukka and Enugu cities. E.
View Article and Find Full Text PDFFilterable microorganisms participate in dissolved organic carbon (DOC) cycling in freshwater systems, however their exact functional role remains unknown. We determined the taxonomic identity and community dynamics of prokaryotic microbiomes in the 0.22 µm-filtered fraction and unfiltered freshwater from the Conwy River (North Wales, UK) in microcosms and, using targeted metabolomics and 14C-labelling, examined their role in the utilization of amino acids, organic acids and sugars spiked at environmentally-relevant (nanomolar) concentrations.
View Article and Find Full Text PDFMarine hydrocarbon-degrading bacteria play an important role in natural petroleum biodegradation processes and were initially associated with man-made oil spills or natural seeps. There is no full clarity though on what, in the absence of petroleum, their natural niches are. Few studies pointed at some marine microalgae that produce oleophilic compounds (alkanes, long-chain fatty acids, and alcohols) as potential natural hosts of these bacteria.
View Article and Find Full Text PDFAmination of bulky ketones, particularly in () configuration, is an attractive chemical conversion; however, known ω-transaminases (ω-TAs) show insufficient levels of performance. By applying two screening methods, we discovered 10 amine transaminases from the class III ω-TA family that were 38% to 76% identical to homologues. We present examples of such enzymes preferring bulky ketones over keto acids and aldehydes with stringent () selectivity.
View Article and Find Full Text PDFThe continuous growth of global plastics production, including polyesters, has resulted in increasing plastic pollution and subsequent negative environmental impacts. Therefore, enzyme-catalyzed depolymerization of synthetic polyesters as a plastics recycling approach has become a focus of research. In this study, we screened over 200 purified uncharacterized hydrolases from environmental metagenomes and sequenced microbial genomes and identified at least 10 proteins with high hydrolytic activity against synthetic polyesters.
View Article and Find Full Text PDFHere, we report the draft genome sequence of C7, a strain that represents a new member of the clade of the family (). The genome size of C7 is 3.7 Mb (3,734,267 bp), with a G+C content of 58.
View Article and Find Full Text PDFEsterases receive special attention because of their wide distribution in biological systems and environments and their importance for physiology and chemical synthesis. The prediction of esterases' substrate promiscuity level from sequence data and the molecular reasons why certain such enzymes are more promiscuous than others remain to be elucidated. This limits the surveillance of the sequence space for esterases potentially leading to new versatile biocatalysts and new insights into their role in cellular function.
View Article and Find Full Text PDFThe novel Gram-negative, aerobic, non-motile, non-spore-forming, short-rod bacterium, strain C7T, was isolated from a seawater sample from Menai Straits (Wales, UK) and characterized. Phylogenetic analysis of 16S rRNA gene sequences showed that this strain represented a distinct lineage within the Roseobacterclade of family Rhodobacteracea within Alphaproteobacteria. The members of the genera Pontivivens (Pontivivensinsulae GYSW-23T), Celeribacter (Celeribactermanganoxidans DY2-5T), Donghicola (Donghicola eburneus SW-277T), Roseovarius (Roseovariushalotolerans HJ50T and Roseovariuspacificus 81-2T), Cribrihabitans (Cribrihabitansmarinus CZ-AM5T) and Aestuariihabitans (Aestuariihabitansbeolgyonensis BB-MW15T) were the closest relatives with 16S rRNA gene sequence identities between 93.
View Article and Find Full Text PDFMarine bacterium Oleiphilus messinensis ME102 (DSM 13489) isolated from the sediments of the harbor of Messina (Italy) is a member of the order Oceanospirillales, class Gammaproteobacteria, representing the physiological group of marine obligate hydrocarbonoclastic bacteria (OHCB) alongside the members of the genera Alcanivorax, Oleispira, Thalassolituus, Cycloclasticus and Neptunomonas. These organisms play a crucial role in the natural environmental cleanup in marine systems. Despite having the largest genome (6.
View Article and Find Full Text PDFMetagenomics has made accessible an enormous reserve of global biochemical diversity. To tap into this vast resource of novel enzymes, we have screened over one million clones from metagenome DNA libraries derived from sixteen different environments for carboxylesterase activity and identified 714 positive hits. We have validated the esterase activity of 80 selected genes, which belong to 17 different protein families including unknown and cyclase-like proteins.
View Article and Find Full Text PDFThe analysis of catabolic capacities of microorganisms is currently often achieved by cultivation approaches and by the analysis of genomic or metagenomic datasets. Recently, a microarray system designed from curated key aromatic catabolic gene families and key alkane degradation genes was designed. The collection of genes in the microarray can be exploited to indicate whether a given microbe or microbial community is likely to be functionally connected with certain degradative phenotypes, without previous knowledge of genome data.
View Article and Find Full Text PDFThis chapter discusses metagenomics and its application for enzyme discovery, with a focus on hydrolytic enzymes from marine metagenomic libraries. With less than one percent of culturable microorganisms in the environment, metagenomics, or the collective study of community genetics, has opened up a rich pool of uncharacterized metabolic pathways, enzymes, and adaptations. This great untapped pool of genes provides the particularly exciting potential to mine for new biochemical activities or novel enzymes with activities tailored to peculiar sets of environmental conditions.
View Article and Find Full Text PDFA metagenomic fosmid expression library established from environmental DNA (eDNA) from the shallow hot vent sediment sample collected from the Levante Bay, Vulcano Island (Aeolian archipelago) was established in Escherichia coli. Using activity-based screening assays, we have assessed 9600 fosmid clones corresponding to approximately 350 Mbp of the cloned eDNA, for the lipases/esterases/lactamases, haloalkane and haloacid dehalogenases, and glycoside hydrolases. Thirty-four positive fosmid clones were selected from the total of 120 positive hits and sequenced to yield ca.
View Article and Find Full Text PDFCrude oil is one of the most important natural assets for humankind, yet it is a major environmental pollutant, notably in marine environments. One of the largest crude oil polluted areas in the word is the semi-enclosed Mediterranean Sea, in which the metabolic potential of indigenous microbial populations towards the large-scale chronic pollution is yet to be defined, particularly in anaerobic and micro-aerophilic sites. Here, we provide an insight into the microbial metabolism in sediments from three chronically polluted marine sites along the coastline of Italy: the Priolo oil terminal/refinery site (near Siracuse, Sicily), harbour of Messina (Sicily) and shipwreck of MT Haven (near Genoa).
View Article and Find Full Text PDFTwo of the largest crude oil-polluted areas in the world are the semi-enclosed Mediterranean and Red Seas, but the effect of chronic pollution remains incompletely understood on a large scale. We compared the influence of environmental and geographical constraints and anthropogenic forces (hydrocarbon input) on bacterial communities in eight geographically separated oil-polluted sites along the coastlines of the Mediterranean and Red Seas. The differences in community compositions and their biodegradation potential were primarily associated (P < 0.
View Article and Find Full Text PDFThe present study provides a deeper view of protein functionality as a function of temperature, salt and pressure in deep-sea habitats. A set of eight different enzymes from five distinct deep-sea (3040-4908 m depth), moderately warm (14.0-16.
View Article and Find Full Text PDFMost of the Earth's biosphere is cold and is populated by cold-adapted microorganisms. To explore the natural enzyme diversity of these environments and identify new carboxylesterases, we have screened three marine metagenome gene libraries for esterase activity. The screens identified 23 unique active clones, from which five highly active esterases were selected for biochemical characterization.
View Article and Find Full Text PDFUbiquitous bacteria from the genus Oleispira drive oil degradation in the largest environment on Earth, the cold and deep sea. Here we report the genome sequence of Oleispira antarctica and show that compared with Alcanivorax borkumensis--the paradigm of mesophilic hydrocarbonoclastic bacteria--O. antarctica has a larger genome that has witnessed massive gene-transfer events.
View Article and Find Full Text PDFSeveral members of the C-C MCP (meta-cleavage product) hydrolase family demonstrate an unusual ability to hydrolyse esters as well as the MCPs (including those from mono- and bi-cyclic aromatics). Although the molecular mechanisms responsible for such substrate promiscuity are starting to emerge, the full understanding of these complex enzymes is far from complete. In the present paper, we describe six distinct α/β hydrolases identified through genomic approaches, four of which demonstrate the unprecedented characteristic of activity towards a broad spectrum of substrates, including p-nitrophenyl, halogenated, fatty acyl, aryl, glycerol, cinnamoyl and carbohydrate esters, lactones, 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate and 2-hydroxy-6-oxohepta-2,4-dienoate.
View Article and Find Full Text PDFThalassolituus oleivorans is one of the most prevalent marine gammaproteobacteria in microbial communities, emerging after oil spills in coastal, estuarine, and surface seawaters. Here, we present the assembled genome of strain T. oleivorans MIL-1 (DSM 14913(T)), which is 3,920,328 bp with a G+C content of 46.
View Article and Find Full Text PDF