Publications by authors named "Tatyana Livshultz"

Article Synopsis
  • Angiosperms are vital for ecosystems and human life, making it important to understand their evolutionary history to grasp their ecological dominance.
  • The study builds an extensive tree of life for about 8,000 angiosperm genera using 353 nuclear genes, significantly increasing the sampling size and refining earlier classifications.
  • The findings reveal a complex evolutionary history marked by high gene tree conflict and rapid diversification, particularly during the early angiosperm evolution, with shifts in diversification rates linked to global temperature changes.
View Article and Find Full Text PDF

Premise: Comprising five families that vastly differ in species richness-ranging from Gelsemiaceae with 13 species to the Rubiaceae with 13,775 species-members of the Gentianales are often among the most species-rich and abundant plants in tropical forests. Despite considerable phylogenetic work within particular families and genera, several alternative topologies for family-level relationships within Gentianales have been presented in previous studies.

Methods: Here we present a phylogenomic analysis based on nuclear genes targeted by the Angiosperms353 probe set for approximately 150 species, representing all families and approximately 85% of the formally recognized tribes.

View Article and Find Full Text PDF

Apocynaceae are well known for diverse specialized metabolites that are distributed in a phylogenetically informative manner. Pyrrolizidine alkaloids (PAs) have been reported sporadically in one lineage in the family, the APSA clade, but few species have been studied to date. We conducted the first systematic survey of Apocynaceae for retronecine-type PAs, sampling leaves from 231 species from 13 of 16 major lineages within the APSA clade using HPLC-MS/MS.

View Article and Find Full Text PDF

Premise: Apocynaceae is the 10th largest flowering plant family and a focus for study of plant-insect interactions, especially as mediated by secondary metabolites. However, it has few genomic resources relative to its size. Target capture sequencing is a powerful approach for genome reduction that facilitates studies requiring data from the nuclear genome in non-model taxa, such as Apocynaceae.

View Article and Find Full Text PDF

Premise Of The Study: Understanding the phylogenetic distribution of defensive plant secondary metabolites is essential to the macroevolutionary study of chemically mediated plant-animal interactions. The chemical ecology of pyrrolizidine alkaloids (PAs) has been extensively studied in a number of plant-herbivore systems, including Apocynaceae (the milkweed and dogbane family) and Danainae (the milkweed and clearwing butterflies). A systematic survey is necessary to establish a detailed understanding of their occurrence across Apocynaceae.

View Article and Find Full Text PDF

Background And Aims: Large clades of angiosperms are often characterized by diverse interactions with pollinators, but how these pollination systems are structured phylogenetically and biogeographically is still uncertain for most families. Apocynaceae is a clade of >5300 species with a worldwide distribution. A database representing >10 % of species in the family was used to explore the diversity of pollinators and evolutionary shifts in pollination systems across major clades and regions.

View Article and Find Full Text PDF

Premise Of The Study: We provide the largest phylogenetic analyses to date of Apocynaceae in terms of taxa and molecular data as a framework for analyzing the evolution of vegetative and reproductive traits.

Methods: We produced maximum-likelihood phylogenies of Apocynaceae using 21 plastid loci sampled from 1045 species (nearly 25% of the family) and complete plastomes from 73 species. We reconstructed ancestral states and used model comparisons in a likelihood framework to analyze character evolution across Apocynaceae.

View Article and Find Full Text PDF

Premise Of The Study: Biological collections are uniquely poised to inform the stewardship of life on Earth in a time of cataclysmic biodiversity loss. Efforts to fully leverage collections are impeded by a lack of trained taxonomists and a lack of interest and engagement by the public. We provide a model of a crowd-sourced data collection project that produces quality taxonomic data sets and empowers citizen scientists through real contributions to science.

View Article and Find Full Text PDF

Plants produce specialized metabolites for their defence. However, specialist herbivores adapt to these compounds and use them for their own benefit. Plants attacked predominantly by specialists may be under selection to reduce or eliminate production of co-opted chemicals: the defence de-escalation hypothesis.

View Article and Find Full Text PDF

Crown clade Apocynaceae comprise seven primary lineages of lianas, shrubs, and herbs with a diversity of pollen aggregation morphologies including monads, tetrads, and pollinia, making them an ideal group for investigating the evolution and function of pollen packaging. Traditional molecular systematic approaches utilizing small amounts of sequence data have failed to resolve relationships along the spine of the crown clade, a likely ancient rapid radiation. The previous best estimate of the phylogeny was a five-way polytomy, leaving ambiguous the homology of aggregated pollen in two major lineages, the Periplocoideae, which possess pollen tetrads, and the milkweeds (Secamonoideae plus Asclepiadoideae), which possess pollinia.

View Article and Find Full Text PDF

Premise Of The Study: Climate change that increases mortality of plants and pollinators can create mate-finding Allee effects and thus act as a strong selective force on floral morphology. Milkweeds (Secamonoideae and Asclepiadoideae; Apocynaceae) are typically small plants of seasonally dry habitats, with pollinia and high pollen-transfer efficiency. Their sister group (tribe Baisseeae and Dewevrella) is mostly comprised of giant lianas of African rainforests, with pollen in monads.

View Article and Find Full Text PDF

Background: Milkweeds (Asclepias L.) have been extensively investigated in diverse areas of evolutionary biology and ecology; however, there are few genetic resources available to facilitate and compliment these studies. This study explored how low coverage genome sequencing of the common milkweed (Asclepias syriaca L.

View Article and Find Full Text PDF