Peptides play an essential role in plant development and immunity. belonging to the Rosaceae family, is a medicinal plant which exhibits valuable pharmacological properties. extracts in vitro inhibit the growth of a variety of plant and human pathogens.
View Article and Find Full Text PDFThe γ-core motif is a structural element shared by most host antimicrobial peptides (AMPs), which is supposed to contribute to their antimicrobial properties. In this review, we summarized the available data on the γ-core peptides of plant AMPs. We describe γ-core peptides that have been shown to exhibit inhibitory activity against plant and human bacterial and fungal pathogens that make them attractive scaffolds for the development of novel anti-infective agents.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) constitute an essential part of the plant immune system. They are regarded as alternatives to conventional antibiotics and pesticides. In this study, we have identified the γ-core motifs, which are associated with antimicrobial activity, in 18 AMPs from grasses and assayed their antimicrobial properties against nine pathogens, including yeasts affecting humans, as well as plant pathogenic bacteria and fungi.
View Article and Find Full Text PDFPlants have evolved a complex multilayered defense system to counteract various invading pathogens during their life cycle. In addition to silencing, considered to be a major molecular defense response against viruses, different signaling pathways activated by phytohormones trigger the expression of secondary metabolites and proteins preventing virus entry and propagation. In this study, we explored the response of cucumber plants to one of the global pathogens, cucumber green mottle mosaic virus (CGMMV), which causes severe symptoms on leaves and fruits.
View Article and Find Full Text PDFCysteine-rich peptides (CRPs) play an important role in plant physiology. However, their role in resistance induced by biogenic elicitors remains poorly understood. Using whole-genome transcriptome sequencing and our CRP search algorithm, we analyzed the repertoire of CRPs in tomato L.
View Article and Find Full Text PDFNon-specific lipid-transfer proteins (nsLTPs) represent a family of plant antimicrobial peptides (AMPs) implicated in diverse physiological processes. However, their role in induced resistance (IR) triggered by non-pathogenic fungal strains and their metabolites is poorly understood. In this work, using RNA-seq data and our AMP search pipeline, we analyzed the repertoire of nsLTP genes in the wheat and studied their expression in response to infection and treatment with the intracellular metabolites of FS-94.
View Article and Find Full Text PDFAntimicrobial peptides (AMPs) are the main components of the plant innate immune system. Defensins represent the most important AMP family involved in defense and non-defense functions. In this work, global RNA sequencing and transcriptome assembly were performed to explore the diversity of defensin-like (DEFL) genes in the wheat and to study their role in induced resistance (IR) mediated by the elicitor metabolites of a non-pathogenic strain FS-94 of .
View Article and Find Full Text PDFBeing perfectly adapted to diverse environments, chickweed (Stellaria media (L.) Vill), a ubiquitous garden weed, grows widely in Europe and North America. As opposed to the model plants, many weeds, and S.
View Article and Find Full Text PDFA novel peptide named SmAMP3 was isolated from leaves of common chickweed (Stellaria media L.) by a combination of acidic extraction and a single-step reversed-phase HPLC and sequenced. The peptide is basic and cysteine-rich, consists of 35 amino acids, and contains three disulphide bridges.
View Article and Find Full Text PDFA novel family of antifungal peptides was discovered in the wheat Triticum kiharae Dorof. et Migusch. Two members of the family, designated Tk-AMP-X1 and Tk-AMP-X2, were completely sequenced and shown to belong to the α-hairpinin structural family of plant peptides with a characteristic C1XXXC2-X(n)-C3XXXC4 motif.
View Article and Find Full Text PDFHevein-like plant defense peptides WAMP-1a/b with a unique 10-Cys motif are found in the wheat Triticum kiharae seeds. Three different wamp genomic and cDNA sequences were derived from T. kiharae; no introns were spotted in the protein-coding regions of the genes.
View Article and Find Full Text PDFTwo forms of a novel antimicrobial peptide (AMP), named WAMP-1a and WAMP-1b, that differ by a single C-terminal amino acid residue and belong to a new structural type of plant AMP were purified from seeds of Triticum kiharae Dorof. et Migusch. Although WAMP-1a and WAMP-1b share similarity with hevein-type peptides, they possess 10 cysteine residues arranged in a unique cysteine motif which is distinct from those described previously for plant AMPs, but is characteristic of the chitin-binding domains of cereal class I chitinases.
View Article and Find Full Text PDFThe origin of polyploid wheat genomes has been the subject of numerous studies and is the key problem in wheat phylogeny. Different diploid species have been supposed to donate genomes to tetraploid and hexaploid wheat species. To shed light on phylogenetic relationships between the presumable A genome donors and hexaploid wheat species we have applied a new approach: the comparison of defensins from diploid Triticum species, Triticum boeoticum Boiss.
View Article and Find Full Text PDF