Collagen hydrolysis, catalyzed by Zn(II)-dependent matrix metalloproteinases (MMPs), is a critical physiological process. Despite previous computational investigations into the catalytic mechanisms of MMP-mediated collagenolysis, a significant knowledge gap in understanding remains regarding the influence of conformational sampling and entropic contributions at physiological temperature on enzymatic collagenolysis. In our comprehensive multilevel computational study, employing quantum mechanics/molecular mechanics (QM/MM) metadynamics (MetD) simulations, we aimed to bridge this gap and provide valuable insights into the catalytic mechanism of MMP-1.
View Article and Find Full Text PDFChemphyschem
September 2024
Aspartyl/asparaginyl hydroxylase (AspH) catalyzes the post-translational hydroxylations of vital human proteins, playing an essential role in maintaining their biological functions. Single-point mutations in the Second Coordination Sphere (SCS) and long-range (LR) residues of AspH have been linked to pathological conditions such as the ophthalmologic condition Traboulsi syndrome and chronic kidney disease (CKD). Although the clinical impacts of these mutations are established, there is a critical knowledge gap regarding their specific atomistic effects on the catalytic mechanism of AspH.
View Article and Find Full Text PDFBiocatalytic C-H oxidation reactions are of important synthetic utility, provide a sustainable route for selective synthesis of important organic molecules, and are an integral part of fundamental cell processes. The multidomain non-heme Fe(ii)/2-oxoglutarate (2OG) dependent oxygenase AspH catalyzes stereoselective (3)-hydroxylation of aspartyl- and asparaginyl-residues. Unusually, compared to other 2OG hydroxylases, crystallography has shown that AspH lacks the carboxylate residue of the characteristic two-His-one-Asp/Glu Fe-binding triad.
View Article and Find Full Text PDFHuman matrix metalloproteinase-1 (MMP-1) is a zinc(II)-dependent enzyme that catalyzes collagenolysis. Despite the availability of extensive experimental data, the mechanism of MMP-1-catalyzed collagenolysis remains poorly understood due to the lack of experimental structure of a catalytically productive enzyme-substrate complex of MMP-1. In this study, we apply molecular dynamics and combined quantum mechanics/molecular mechanics to reveal the reaction mechanism of MMP-1 based on a computationally modeled structure of the catalytically competent complex of MMP-1 that contains a large triple-helical peptide substrate.
View Article and Find Full Text PDFThe front cover artwork is provided by Dr. Karabencheva-Christova's group at Michigan Technological University. The images show the initially formed and the catalytically productive conformations of MMP-1 complex with the Triple Helical Peptide (THP), the free energy profile connecting them as well as the coordination geometry of the catalytic zinc (II).
View Article and Find Full Text PDFMethylation of cytosine bases is strongly linked to gene expression, imprinting, aging, and carcinogenesis. The Ten-eleven translocation (TET) family of enzymes, which are Fe(II)/2-oxoglutarate (2OG)-dependent enzymes, employ Fe(IV)=O species to dealkylate the lesioned bases to an unmodified cytosine. Recently, it has been shown that the TET2 enzyme can catalyze promiscuously DNA substrates containing unnatural alkylated cytosine.
View Article and Find Full Text PDFFe(II)-dependent oxygenases employ hydrogen atom transfer (HAT) to produce a myriad of products. Understanding how such enzymes use dynamic processes beyond the immediate vicinity of the active site to control the selectivity and efficiency of HAT is important for metalloenzyme engineering; however, obtaining such knowledge by experiments is challenging. This study develops a computational framework for identifying second coordination sphere (SCS) and especially long-range (LR) residues relevant for catalysis through dynamic cross-correlation analysis (DCCA) using the human histone demethylase PHF8 (KDM7B) as a model oxygenase.
View Article and Find Full Text PDFMetalloproteinase-1 (MMP-1) catalyzed collagen degradation is essential for a wide variety of normal physiological processes, while at the same time contributing to several diseases in humans. Therefore, a comprehensive understanding of this process is of great importance. Although crystallographic and spectroscopic studies provided fundamental information about the structure and function of MMP-1, the precise mechanism of collagen degradation especially considering the complex and flexible structure of the substrate, remains poorly understood.
View Article and Find Full Text PDFChemphyschem
December 2021
Matrix metalloproteinase-1 (MMP-1) is a Zn(II) dependent endopeptidase involved in the degradation of collagen, the most abundant structural protein in the extracellular matrix of connective tissues and the human body. Herein we performed a multilevel computational analysis including molecular dynamics (MD), combined quantum mechanics/molecular mechanics (QM/MM), and quantum mechanics (QM) calculations to characterize the structure and geometry of the catalytic Zn(II) within the MMP-1 protein environment in comparison to crystallographic and spectroscopic data. The substrate's removal fine-tuned impact on the conformational dynamics and geometry of the catalytic Zn(II) center was also explored.
View Article and Find Full Text PDFMatrix metalloproteinases (MMPs) are Zn(II) dependent endopeptidases involved in the degradation of collagen. Unbalanced collagen breakdown results in numerous pathological conditions, including cardiovascular and neurodegenerative diseases and tumor growth and invasion. Matrix metalloproteinase-1 (MMP-1) is a member of the MMPs family.
View Article and Find Full Text PDFThe -methyl lysine status of histones is important in the regulation of eukaryotic transcription. The Fe(ii) and 2-oxoglutarate (2OG) -dependent JmjC domain enzymes are the largest family of histone -methyl lysine demethylases (KDMs). The human KDM4 subfamily of JmjC KDMs is linked with multiple cancers and some of its members are medicinal chemistry targets.
View Article and Find Full Text PDFAlkB and its human homologue AlkBH2 are Fe(II)- and 2-oxoglutarate (2OG)-dependent oxygenases that repair alkylated DNA bases occurring as a consequence of reactions with mutagenic agents. We used molecular dynamics (MD) and combined quantum mechanics/molecular mechanics (QM/MM) methods to investigate how structural dynamics influences the selectivity and mechanisms of the AlkB- and AlkBH2-catalyzed demethylation of 3-methylcytosine (mC) in single (ssDNA) and double (dsDNA) stranded DNA. Dynamics studies reveal the importance of the flexibility in both the protein and DNA components in determining the preferences of AlkB for ssDNA and of AlkBH2 for dsDNA.
View Article and Find Full Text PDFPHF8 (KDM7B) is a human non-heme 2-oxoglutarate (2OG) JmjC domain oxygenase that catalyzes the demethylation of the di/mono-N-methylated K9 residue of histone H3. Altered PHF8 activity is linked to genetic diseases and cancer; thus, it is an interesting target for epigenetic modulation. We describe the use of combined quantum mechanics/molecular mechanics (QM/MM) and molecular dynamics (MD) simulations to explore the mechanism of PHF8, including dioxygen activation, 2OG binding modes, and substrate demethylation steps.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
February 2020
The demethylation of lysine residues of histone proteins is a key epigenetic mechanism in cells. The enzymes that catalyze these processes are called histone demethylases (KDMs). The largest family of KDMs is the Jumonji C (JmjC) domain-containing enzymes; these includes KDM2-7 subfamily of enzymes.
View Article and Find Full Text PDFThe human KDM7 subfamily histone H3 Nϵ-methyl lysine demethylases PHF8 (KDM7B) and KIAA1718 (KDM7A) have different substrate selectivities and are linked to genetic diseases and cancer. We describe experimentally based computational studies revealing that flexibility of the region linking the PHD finger and JmjC domains in PHF8 and KIAA1718 regulates interdomain interactions, the nature of correlated motions, and ultimately H3 binding and demethylation site selectivity. F279S an X-linked mental retardation mutation in PHF8 is involved in correlated motions with the iron ligands and second sphere residues.
View Article and Find Full Text PDFN-Methylation of DNA/RNA bases can be regulatory or damaging and is linked to diseases including cancer and genetic disorders. Bacterial AlkB and human FTO are DNA/RNA demethylases belonging to the Fe(ii) and 2-oxoglutarate oxygenase superfamily. Modelling studies reveal conformational dynamics influence structure-function relationships of AlkB and FTO, e.
View Article and Find Full Text PDFThe combined quantum mechanics/molecular mechanics (QM/MM) methods have become a valuable tool in computational biochemistry and received versatile applications for studying the reaction mechanisms of enzymes. The approach combines the calculations of the electronic structure of the active site by QM, with modeling of the protein environment using MM force field, which allows the long-range electrostatics and steric effects on the enzyme reactivity to be accounted for. In this review, we review some key theoretical and computational aspects of the method and we also present some applications to particular enzymatic reactions such as tryptophan-7-halogenase, cyclooxygenase-1, and the epidermal growth factor receptor.
View Article and Find Full Text PDFFructose transporter GLUT5 is characterized by unusual substrate specificity and is linked to a variety of metabolic disorders. A series of high-affinity GLUT5-specific sugar-based probes - ManCous - have been very recently described and efficiently used as reporters of GLUT5 activity in cells. Here we present several 1 microsecond molecular dynamics (MD) simulations of GLUT5 and its complexes with fructose and two different ManCou probes, in a solvated cell membrane environment.
View Article and Find Full Text PDFMany natural organic compounds with pharmaceutical applications, including antibiotics (chlortetracycline and vancomycin), antifungal compounds (pyrrolnitrin), and chemotherapeutics (salinosporamide A and rebeccamycin) are chlorinated. Halogenating enzymes like tryptophan 7-halogenase (PrnA) and tryptophan 5-halogenase (PyrH) perform regioselective halogenation of tryptophan. In this study, the conformational dynamics of two flavin-dependent tryptophan halogenases-PrnA and PyrH-was investigated through molecular dynamics simulations, which are in agreement with the crystallographic and kinetic experimental studies of both enzymes and provide further explanation of the experimental data at an atomistic level of accuracy.
View Article and Find Full Text PDFWe report five fluorescent probes based on coumarin-hybridized fluorescent dyes with spirolactam ring structures (A-E) to detect pH changes in live cell by monitoring visible and near-infrared fluorescence changes. Under physiological or basic conditions, the fluorescent probes A, B, C, D and E preserve their spirolactam ring-closed forms and only display fluorescent peaks in the visible region corresponding to coumarin moieties at 497, 483, 498, 497 and 482 nm, respectively. However, at acidic pH, the rings of the spirolactam forms of the fluorescent probes A, B, C, D and E open up, generating new near-infrared fluorescence peaks at 711, 696, 707, 715, and 697 nm, respectively, through significantly extended π-conjugation to coumarin moieties of the fluorophores.
View Article and Find Full Text PDFTryptophan 7-halogenase catalyzes chlorination of free tryptophan to 7-chlorotryptophan, which is the first step in the antibiotic pyrrolnitrin biosynthesis. Many biologically and pharmaceutically active natural products contain chlorine and thus, an understanding of the mechanism of its introduction into organic molecules is important. Whilst enzyme-catalyzed chlorination is accomplished with ease, it remains a difficult task for the chemists.
View Article and Find Full Text PDFMatrix metalloproteinase-1 (MMP-1) is a zinc-dependent protease that catalyzes hydrolysis of interstitial collagens. A previously reported X-ray crystallographic structure revealed specific interactions between a triple-helical peptide (THP) model of interstitial collagen and the hemopexin-like (HPX) and catalytic (CAT) domains of MMP-1. An NMR-based structure of MMP-1 in a complex with a different THP was also solved, where docking was used to model the MMP-1·THP interactions and develop a mechanism for the early stages of collagenolysis.
View Article and Find Full Text PDFAdv Protein Chem Struct Biol
November 2017
Several members of the zinc-dependent matrix metalloproteinase (MMP) family catalyze collagen degradation. Experimental data reveal a collaboration between different MMP domains in order to achieve efficient collagenolysis. Molecular dynamics (MD) simulations have been utilized to provide atomistic details of the collagenolytic process.
View Article and Find Full Text PDFMatrix metalloproteinase-1 (MMP-1) is one of the most widely studied enzymes involved in collagen degradation. Mutations of specific residues in the MMP-1 hemopexin-like (HPX) domain have been shown to modulate activity of the MMP-1 catalytic (CAT) domain. In order to reveal the structural and conformational effects of such mutations, a molecular dynamics (MD) study was performed of in silico mutated residues in the X-ray crystallographic structure of MMP-1 complexed with a collagen-model triple-helical peptide (THP).
View Article and Find Full Text PDF