Publications by authors named "Tatyana Elkin"

Despite the discovery of actinide borohydride complexes over 80 years ago, no plutonium borohydride complexes have been structurally validated using single-crystal X-ray diffraction (XRD). Here we describe Pu(HBPBuBH), the first example of a Pu(III) borohydride complex authenticated by XRD and NMR spectroscopy. Theoretical calculations (DFT, EDA, and QTAIM) and experimental comparisons of metal-boron distances suggest that metal-borohydride covalency in M(HBPBuBH) complexes generally decreases in the order M = U(III) > Pu(III) > Ln(III).

View Article and Find Full Text PDF

The interactions between uranium and non-innocent organic species are an essential component of fundamental uranium redox chemistry. However, they have seldom been explored in the context of multidimensional, porous materials. Uranium-based metal-organic frameworks (MOFs) offer a new angle to study these interactions, as these self-assembled species stabilize uranium species through immobilization by organic linkers within a crystalline framework, while potentially providing a method for adjusting metal oxidation state through coordination of non-innocent linkers.

View Article and Find Full Text PDF

Polystyrene--polyethylene glycol (PS--PEG) amphiphilic block copolymers featuring a terminal tridentate -ligand (terpyridine) were synthesized for the first time through an efficient route. In this approach, telechelic chain-end modified polystyrenes were produced via reversible addition-fragmentation chain-transfer (RAFT) polymerization by using terpyridine trithiocarbonate as the chain-transfer agent, after which the hydrophilic polyethylene glycol (PEG) block was incorporated into the hydrophobic polystyrene (PS) block in high yields via a thiol-ene process. Following metal-coordination with Mn, Fe, Ni, and Zn, the resulting metallo-polymers were self-assembled into spherical, vesicular nanostructures, as characterized by dynamic light scattering and transmission electron microscopy (TEM) imaging.

View Article and Find Full Text PDF

The reactivity of the monoanionic amidinate ligand [(CH3)3CNC(Ph)NSiMe2NC(Ph)-NHC(CH3)3]Li (1) with a silyl amido side arm towards the early actinides, uranium and thorium, was investigated. While the salt metathesis reaction with ThCl4(thf)3 afforded the bis(amidinate)thorium(iv) dichloride complex [(CH3)3CNC(Ph)NSi(CH3)2NC(Ph)-NHC(CH3)3]ThCl2 (2) in high yield, the reaction of ligand 1 with UCl4 leads to a Lewis acid supported nucleophilic attack of an incoming ligand unit, yielding the trichloro uranium complex [(CH3)3CNC(Ph)Si(CH3)2-N(C(CH3)3)C(Ph)NSi(CH3)2NC(Ph)N-(C(CH3)3]UCl3 (4). The exposure of in situ formed complex 2 to wet THF solutions (<1% w of water), gave the mono(amidinate)Th(iv)(chloro)(bis-hydroxo) dimeric complex [(CH3)3CNC(Ph)NSiMe2NC(Ph)NHC(CH3)3Th(OH)2(Cl)]2·(3) as bright red needles, exhibiting extremely short Th-OH bond distances (1.

View Article and Find Full Text PDF