Ischemic stroke (IS) and subsequent neuropsychiatric disorders are among the leading causes of disability worldwide. Several strategies have been previously proposed to utilize exosomes for assessing the risk of IS-related diseases. The aim of this work was to evaluate serum exosomal proteins in IS patients during the chronic post-stroke period and to search for their associations with the development of post-stroke mild cognitive impairment (MCI).
View Article and Find Full Text PDFThe hypothalamic-pituitary-adrenal axis is known to be involved in the pathogenesis of epilepsy and psychiatric disorders. Epileptic seizures (ESs) and psychogenic non-epileptic seizures (PNESs) are frequently differentially misdiagnosed. This study aimed to evaluate changes in serum cortisol and prolactin levels after ESs and PNESs as possible differential diagnostic biomarkers.
View Article and Find Full Text PDFNeuropsychiatric complications, in particular cognitive and depressive disorders, are common consequences of ischemic stroke (IS) and complicate the rehabilitation, quality of life, and social adaptation of patients. The hypothalamic-pituitary-adrenal (HPA) system, sympathoadrenal medullary system (SAMS), and inflammatory processes are believed to be involved in the pathogenesis of these disorders. This study aimed to explore these systems in IS patients, including those with post-stroke cognitive and depressive disorders, within a year after IS.
View Article and Find Full Text PDFBackground: The hypothalamic-pituitary-adrenal (HPA) axis, inflammatory processes and neurotrophic factor systems are involved in pathogenesis of both epilepsy and depressive disorders. The study aimed to explore these systems in patients with focal epilepsy (PWE, = 76), epilepsy and comorbid depression (PWCED = 48), and major depressive disorder (PWMDD, = 62) compared with healthy controls (HC, = 78).
Methods: Parameters of the HPA axis, neurotrophic factors, and TNF-α were measured in blood serum along with the hemogram.