Fiber-like cells with thickened cell walls of specific structure and polymer composition that includes (1 → 4)-β-galactans develop in the outer stem cortex of several moss species gametophytes. The early land plants evolved several specialized cell types and tissues that did not exist in their aquatic ancestors. Of these, water-conducting elements and reproductive organs have received most of the research attention.
View Article and Find Full Text PDFThe cellulose-enriched tertiary cell walls present in many plant fibers have specific composition, architecture, machinery of formation, and function. To better understand the mechanisms underlying their mode of action and to reveal the peculiarities of fibers from different plant species, it is necessary to more deeply characterize the major components. Next to overwhelming cellulose, rhamnogalacturonan I (RG-I) is considered to be the key polymer of the tertiary cell wall; however, it has been isolated and biochemically characterized in very few plant species.
View Article and Find Full Text PDFAsbestos-driven inflammation contributes to malignant pleural mesothelioma beyond the acquisition of rate-limiting mutations. Genetically modified conditional allelic mice that were previously shown to develop mesothelioma in the absence of exposure to asbestos were induced with lentiviral vector expressing Cre recombinase with and without intrapleural injection of amosite asbestos and monitored until symptoms required euthanasia. Resulting tumours were examined histologically and by immunohistochemistry for expression of lineage markers and immune cell infiltration.
View Article and Find Full Text PDFMalignant mesothelioma is an aggressive tumour of the pleura (MPM) or peritoneum with a clinical presentation at an advanced stage of the disease. Current therapies only marginally improve survival and there is an urgent need to identify new treatments. Carcinoma-associated fibroblasts (CAFs) represent the main component of a vast stroma within MPM and play an important role in the tumour microenvironment.
View Article and Find Full Text PDFRegulation of 5-aminolevulinate synthase 1 (ALAS1) for nonerythroid heme is critical for respiration, cell signaling mechanisms and steroid/drug metabolism. ALAS1 is induced in some genetic disorders but unlike other genes in the heme pathway, a gene variant of associated with inherited disease has not been reported. BALB/c mice carrying a null allele caused by a insert were developed and used to determine the consequences of heme demand of a semi gene copy number.
View Article and Find Full Text PDFPleural mesothelioma is an aggressive malignancy with limited effective therapies. In order to identify therapeutic targets, we integrated SNP genotyping, sequencing and transcriptomics from tumours and low-passage patient-derived cells. Previously unrecognised deletions of SUFU locus (10q24.
View Article and Find Full Text PDFThe EAG () family of voltage-gated K channels are important regulators of neuronal and cardiac action potential firing (excitability) and have major roles in human diseases such as epilepsy, schizophrenia, cancer, and sudden cardiac death. A defining feature of EAG (Kv10-12) channels is a highly conserved domain on the N terminus, known as the eag domain, consisting of a Per-ARNT-Sim (PAS) domain capped by a short sequence containing an amphipathic helix (Cap domain). The PAS and Cap domains are both vital for the normal function of EAG channels.
View Article and Find Full Text PDFBackground: Congenital generalized lipodystrophy (CGL) is a rare disorder characterized by the lack of adipose tissue and metabolic complications with predominantly autosomal recessive inheritance. There are 6 different genes known to cause CGL with 4 main types recognized to date, which differ by the degree of fat loss, association with mental retardation and metabolic disorders, with CGL type 1 and 2 being the most common. Twenty seven cases of СGL type 4 from Japan, Oman, UK, Turkey, Mexico, Saudi Arabia, USA were reported previously.
View Article and Find Full Text PDFCell wall thickening and development of secondary cell walls was a major step in plant terrestrialization that provided the mechanical support, effective functioning of water-conducting elements and fortification of the surface tissues. Despite its importance, the diversity, emergence and evolution of secondary cell walls in early land plants have been characterized quite poorly. Secondary cell walls can be present in different cell types with fibers being among the major ones.
View Article and Find Full Text PDFPhloem fibers are important elements of plant architecture and the target product of many fiber crops. A key stage in fiber development is intrusive elongation, the mechanisms of which are largely unknown. Integrated analysis of miRNA and mRNA expression profiles in intrusivelygrowing fibers obtained by laser microdissection from flax ( L.
View Article and Find Full Text PDFThe intrusive growth, a type of plant cell elongation occurring in the depths of plant tissues, is characterized by the invasion of a growing cell between its neighbours due to a higher rate of elongation. In order to reveal the largely unknown molecular mechanisms of intrusive growth, we isolated primary flax phloem fibers specifically at the stage of intrusive growth by laser microdissection. The comparison of the RNA-Seq data from several flax stem parts enabled the characterization of those processes occurring specifically during the fiber intrusive elongation.
View Article and Find Full Text PDFPlants, although sessile organisms, are nonetheless able to move their body parts; for example, during root contraction of geophytes or in the gravitropic reaction by woody stems. One of the major mechanisms enabling these movements is the development of specialized structures that possess contractile properties. Quite unlike animal muscles, for which the action is driven by protein-protein interactions in the protoplasma, the action of plant 'muscles' is polysaccharide-based and located in the uniquely designed, highly cellulosic cell wall that is deposited specifically in fibers.
View Article and Find Full Text PDFMesothelioma is a fatal tumor of the pleura and is strongly associated with asbestos exposure. The molecular mechanisms underlying the long latency period of mesothelioma and driving carcinogenesis are unknown. Moreover, late diagnosis means that mesothelioma research is commonly focused on end-stage disease.
View Article and Find Full Text PDFCellulose synthesising complex consists of cellulose synthase (CESA) subunits encoded by a multigene family; different sets of CESA genes are known to be expressed during primary and secondary cell wall formation. We examined the expression of LusCESAs in flax (Linum usitatissimum L.) cellulosic fibres at various stages of development and in the course of graviresponse by means of RNA-Seq and quantitative PCR.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2016
Heme iron has many and varied roles in biology. Most commonly it binds as a prosthetic group to proteins, and it has been widely supposed and amply demonstrated that subtle variations in the protein structure around the heme, including the heme ligands, are used to control the reactivity of the metal ion. However, the role of heme in biology now appears to also include a regulatory responsibility in the cell; this includes regulation of ion channel function.
View Article and Find Full Text PDFContractile cell walls are found in various plant organs and tissues such as tendrils, contractile roots, and tension wood. The tension-generating mechanism is not known but is thought to involve special cell wall architecture. We previously postulated that tension could result from the entrapment of certain matrix polymers within cellulose microfibrils.
View Article and Find Full Text PDFPlant fibres-cells with important mechanical functions and a widely used raw material-are usually identified in microscopic sections only after reaching a significant length or after developing a thickened cell wall. We characterized the early developmental stages of hemp (Cannabis sativa) stem phloem fibres, both primary (originating from the procambium) and secondary (originating in the cambium), when they still had only a primary cell wall. We gave a major emphasis to the role of intrusive elongation, the specific type of plant cell growth by which fibres commonly attain large cell length.
View Article and Find Full Text PDFCarbon nanotubes are a valuable industrial product but there is potential for human pulmonary exposure during production and their fibrous shape raises the possibility that they may have effects like asbestos, which caused a worldwide pandemic of disease in the20th century that continues into present. CNT may exist as fibres or as more compact particles and the asbestos-type hazard only pertains to the fibrous forms of CNT. Exposure to asbestos causes asbestosis, bronchogenic carcinoma, mesothelioma, pleural fibrosis and pleural plaques indicating that both the lungs and the pleura are targets.
View Article and Find Full Text PDFThe involvement of the metallic element iron in various biological systems is well known. In many cases, iron is employed in the form of a heme group and the family of proteins and catalytic enzymes that contain heme is well documented (e.g.
View Article and Find Full Text PDFAn initial stage of many neurodegenerative processes is associated with compromised synaptic function and precedes synapse loss, neurite fragmentation, and neuronal death. We showed previously that deficiency of heme, regulating many proteins of pharmacological importance, causes neurodegeneration of primary cortical neurons via N-methyl-d-aspartate receptor (NMDAR)-dependent suppression of the extracellular signal-regulated kinase 1/2 pathway. Here, we asked whether the reduction of heme causes synaptic perturbation before neurite fragmentation in neuronal cultures and investigated molecular mechanisms of synaptic dysfunction in these cells.
View Article and Find Full Text PDFNitric oxide (NO) is an important signaling molecule that is widely used in the nervous system. With recognition of its roles in synaptic plasticity (long-term potentiation, LTP; long-term depression, LTD) and elucidation of calcium-dependent, NMDAR-mediated activation of neuronal nitric oxide synthase (nNOS), numerous molecular and pharmacological tools have been used to explore the physiology and pathological consequences for nitrergic signaling. In this review, the authors summarize the current understanding of this subtle signaling pathway, discuss the evidence for nitrergic modulation of ion channels and homeostatic modulation of intrinsic excitability, and speculate about the pathological consequences of spillover between different nitrergic compartments in contributing to aberrant signaling in neurodegenerative disorders.
View Article and Find Full Text PDFPrincipal neurons of the medial nucleus of the trapezoid body (MNTB) express a spectrum of voltage-dependent K(+) conductances mediated by Kv1-Kv4 channels, which shape action potential (AP) firing and regulate intrinsic excitability. Postsynaptic factors influencing expression of Kv channels were explored using organotypic cultures of brainstem prepared from P9-P12 rats and maintained in either low (5 mm, low-K) or high (25 mm, high-K) [K(+)](o) medium. Whole cell patch-clamp recordings were made after 7-28 days in vitro.
View Article and Find Full Text PDFNMDA receptors (NMDARs) mediate a slow EPSC at excitatory glutamatergic synapses throughout the brain. In many areas the magnitude of the NMDAR-mediated EPSC declines with development and is associated with changes in subunit composition, but the mature channel composition is often unknown. We have employed the calyx of Held terminal with its target, the principal neuron of the medial nucleus of the trapezoid body (MNTB), to examine the NMDAR-mediated EPSC during synapse maturation from P10 to P40.
View Article and Find Full Text PDF