Publications by authors named "Tatyana A Gorshkova"

The specificity of the most plant carbohydrate-binding proteins (CBP), many of which are known only through bioinformatic analysis of the genome, has either not been studied at all or characterized to a limited extent. The task of deciphering the carbohydrate specificity of the proteins can be solved using glycoarrays composed of many tens or even hundreds of glycans immobilized on a glass surface. Plant carbohydrates are the most significant natural ligands for plant proteins; this work shows that plant polysaccharides without additional modification can be immobilized on the surface, bearing N-hydroxysuccinimide activated carboxyl groups.

View Article and Find Full Text PDF

The dynamics of cell wall polysaccharides may modulate the cell wall mechanics and thus control the expansion growth of plant cells. The unique composition of type II primary cell wall characteristic of grasses suggests that they employ specific mechanisms for cell enlargement. We characterized the transcriptomes in five zones along maize root, clustered the expression of genes for numerous glycosyltransferases and performed extensive immunohistochemical analysis to relate the changes in cell wall polysaccharides to critical stages of cell development in Poaceae.

View Article and Find Full Text PDF

Functionally distinct polymers organized on the basis of rhamnogalacturonan I (RG-I) backbone with more than a half of rhamnose residues substituted by the side chains containing mostly galactose were purified from flaxseed mucilage, the primary cell wall of young hypocotyls and tertiary cell walls of bast fibers and characterized by atomic force microscopy. Seed mucilage RG-I with short side chains and unusual O3 substitution showed loose coils or star-like conformations. Primary cell wall RG-I, which included polygalacturonan (PGA) fragments, represented micellar objects and rare long chains.

View Article and Find Full Text PDF

Rhamnogalacturonan I (RG-I), a polysaccharide found in different types of plant cell walls, fulfills specific functions, the structural basis of which remains unclear. Generalized 2D correlation FTIR spectroscopy with dehydration was employed to reveal the structure and interactions in flax RG-I solution and microwave treated gel. Varying water content allowed emphasizing a role of solvent in maintaining different structures.

View Article and Find Full Text PDF

The article presents the structural principles of microwave-induced formation of new gel type from pectic rhamnogalacturonan I (RG-I). The backbone of gel-forming RG-I does not contain consecutive galacturonic residues and modifying groups that can be the cause of junction zone formation as it occurs in course of classical ways of pectin gelation. Microwave irradiation does not cause destruction and chemical modifications of RG-I.

View Article and Find Full Text PDF

Within the family of plant cell wall polysaccharides rhamnogalacturonans I are the most diverse and structurally complex members. In present study we characterize the 3-dimensional structures and dynamic features of the constituents of RG-I along MD trajectories. It is demonstrated that extended threefold helical structure of the rhamnogalacturonan linear backbone is the most energetically favorable motif.

View Article and Find Full Text PDF

The major mechanism of gravitropism that is discussed for herbal plants is based on the nonuniform elongation of cells located on the opposite stem sides, occurring in the growing zone of an organ. However, gravitropic response of flax (Linum usitatissimum L.) is well-pronounced in the lower half of developing stem, which has ceased elongation long in advance of plant inclination.

View Article and Find Full Text PDF

Specific α- l -arabinofuranosidases are involved in the realisation of elongation growth process in cells with type II cell walls. Elongation growth in a plant cell is largely based on modification of the cell wall. In type II cell walls, the Ara/Xyl ratio is known to decrease during elongation due to the partial removal of Ara residues from glucuronoarabinoxylan.

View Article and Find Full Text PDF

The physicochemical properties of flax fiber cell wall rhamnogalacturonan I (RG-I) and its fragments, obtained after galactanase treatment (fraction G1), were characterized. RG-I retains its hydrodynamic volume after its molecular weight decreases by approximately half, as revealed by SEC. Two techniques, DLS and NMR, with different principles of diffusion experiment were used to establish the reasons for this property of RG-I.

View Article and Find Full Text PDF

Details of the backbone and side chain structure of pectic β-(1→4)-galactan from the secondary cell walls of flax phloem fibres were characterised by NMR and mass spectrometry of the fragments obtained after partial hydrolysis with specific endogalactanase and rhamnogalacturonan hydrolase. The proportions of branched and linear rhamnose in the backbone of the polymer equalled 72% and 28%, respectively. Rhamnose branched with a single galactose residue comprised 47% of the total rhamnose; thus, in the bulk of the polymer backbone, rhamnose had 0-1 galactose residues.

View Article and Find Full Text PDF

Gelatinous fibres are specialized fibres, distinguished by the presence of an inner, gelatinous cell-wall layer. In recent years, they have attracted increasing interest since their walls have a desirable chemical composition (low lignin, low pentosan, and high cellulose contents) for applications such as saccharification and biofuel production, and they have interesting mechanical properties, being capable of generating high tensional stress. However, the unique character of gelatinous layer has not yet been widely recognized.

View Article and Find Full Text PDF

Bast (phloem) fibers, tension wood fibers, and other cells with gelatinous-type secondary walls are rich in crystalline cellulose. In developing bast fibers of flax (Linum usitatissimum), a galactan-enriched matrix (Gn-layer) is gradually modified into a mature cellulosic gelatinous-layer (G-layer), which ultimately comprises most of the secondary cell wall. Previous studies have correlated this maturation process with expression of a putative β-galactosidase.

View Article and Find Full Text PDF

The gelatinous type of secondary cell wall is present in tension wood and in phloem fibers of many plants. It is characterized by the absence of xylan and lignin, a high cellulose content and axially orientated microfibrils in the huge S2 layer. In flax phloem fiber, the major non-cellulosic component of such cell walls is tissue-specific galactan, which is tightly bound to cellulose.

View Article and Find Full Text PDF