Antibody-drug conjugates (ADCs) combine cytotoxic payloads with monoclonal antibodies through chemical linkers. Finding linkers that both enhance circulatory stability and enable effective tumor payload release remains a challenge. The conventional valine-citrulline (Val-Cit) linker is associated with several inherent drawbacks, including hydrophobicity-induced aggregation, a limited drug-antibody ratio (DAR), and premature payload release.
View Article and Find Full Text PDFA traceless site-selective conjugation method, "AJICAP-M", was developed for native antibodies at sites using Fc-affinity peptides, focusing on Lys248 or Lys288. It produces antibody-drug conjugates (ADCs) with consistent drug-to-antibody ratios, enhanced stability, and simplified manufacturing. Comparative in vivo assessment demonstrated AJICAP-M's superior stability over traditional ADCs.
View Article and Find Full Text PDFThe site-directed chemical conjugation of antibodies remains an area of great interest and active efforts within the antibody-drug conjugate (ADC) community. We previously reported a unique site modification using a class of immunoglobulin-G (IgG) Fc-affinity reagents to establish a versatile, streamlined, and site-selective conjugation of native antibodies to enhance the therapeutic index of the resultant ADCs. This methodology, termed "AJICAP", successfully modified Lys248 of native antibodies to produce site-specific ADC with a wider therapeutic index than the Food and Drug Administration-approved ADC, Kadcyla.
View Article and Find Full Text PDFBackground: Trastuzumab-emtansine (T-DM1, commercial name: Kadcyla) is well-known antibody-drug conjugate (ADC) and was first approved for human epidermal growth factor receptor 2 (HER2)-positive metastatic breast cancer. This molecular format consisting of trastuzumab and maytansinoid payload (emtansine) is very simple, however, T-DM1 has wide heterogeneity due to non-specific conjugation, lowering its therapeutic index (TI).
Methods: To overcome this issue during the chemical modification of the random conjugation approach to generate T-DM1, we developed a novel chemical conjugation technology termed "AJICAP®" for modification of antibodies in site-specific manner by IgG Fc-affinity peptide based reagents.
To overcome a lack of selectivity during the chemical modification of native non-engineered antibodies, we have developed a technology platform termed "AJICAP" for the site-specific chemical conjugation of antibodies through the use of a class of IgG Fc-affinity reagents. To date, a limited number of antibody-drug conjugates (ADCs) have been synthesized via this approach, and no toxicological study was reported. Herein, we describe the compatibility and robustness of AJICAP technology, which enabled the synthesis of a wide variety of ADCs.
View Article and Find Full Text PDFJ Chromatogr B Analyt Technol Biomed Life Sci
July 2021
Commercially approved conventional antibody-drug conjugates (ADCs) are produced as heterogeneous mixtures containing a stochastic distribution of payloads decorating the antibody molecules resulting in decreased efficacy and thus lowering their therapeutic index. Control of the DAR and conjugation site in the development of next-generation ADCs is believed to assist in increasing the therapeutic index of these targeted biologics leading to overall enhanced clinical efficacy and reduced toxicity. A chemical site-specific conjugation technology termed AJICAP® allows ADC developers to control both the location and quantity of the payload conjugation to an antibody.
View Article and Find Full Text PDFIn recent years, site-specific antibody drug conjugates (ADC)s have been in great demand because they have an expanded therapeutic index compared with conventional ADCs. AJICAP™ technology is a chemical conjugation platform to obtain site-specific ADCs through the use of a class of Fc-affinity compounds. Promising results from early technology development studies led to further investigation of AJICAP™ ADC materials to obtain site-specific and homogeneous drug antibody ratio (DAR) ADCs.
View Article and Find Full Text PDFThe kinase Akt is a key signaling node in regulating cellular growth and survival. It is implicated in cancer by mutation and its role in the downstream transmission of aberrant PI3K signaling. For these reasons, Akt has become an increasingly important target of drug development efforts and several inhibitors are now reaching clinical trials.
View Article and Find Full Text PDFThe kinase Akt plays a central role as a regulator of multiple growth factor input signals, thus making it an attractive anticancer drug target. A-443654 is an ATP-competitive Akt inhibitor. Unexpectedly, treatment of cells with A-443654 causes paradoxical hyperphosphorylation of Akt at its two regulatory sites (Thr308 and Ser473).
View Article and Find Full Text PDF