Volatile compounds with an aldehyde moiety such as (Z)-9-octadecenal are potential ligands for cluster of differentiation 36 (CD36), a transmembrane receptor that has recently been shown to play a role in mammalian olfaction. In this study, by performing an assay using a peptide mimic of human CD36, we aimed to discover additional ligands for the receptor from volatiles containing a single aldehyde group commonly found in human foods. Straight-chain, saturated aliphatic aldehydes with 9-16 carbons exhibited CD36 ligand activities, albeit to varying degrees.
View Article and Find Full Text PDFCluster of differentiation 36 (CD36) is a broadly expressed transmembrane protein that has multiple ligands, including oxidized low-density lipoproteins. We found recently that CD36 is expressed in olfactory sensory neurons and postulated that it plays a role in the detection of distinct odorants in the nasal cavity. To date, however, there have been few examples of attempts to identify CD36-recognizable odorants.
View Article and Find Full Text PDFTransmembrane protein CD36 is considered to bind its distinct ligands such as long-chain fatty acids primarily by recognizing their terminal carboxyl moiety. In this study, we provide evidence that long-chain fatty aldehydes, such as oleic aldehyde, can be recognized by CD36. We suggest that a single aldehyde group may also serve as one of the structural elements recognizable by CD36.
View Article and Find Full Text PDFRodents show a stronger preference for fat than sucrose, even if their diet is isocaloric. This implies that the preference mechanisms for fat and sucrose differ. To compare the contribution of the opioid system to the preference of fat and sucrose, we examined the effects of mu-, delta-, kappa-, and non-selective opioid receptor antagonists on the preference of sucrose and fat, assessed by a two-bottle choice test and a licking test, in mice naïve to sucrose and fat ingestion.
View Article and Find Full Text PDF