The molecular shuttling function of rotaxanes can be exploited to design mechanoresponsive reporter molecules. Here, we report a new approach to such rotaxane-based mechanophores, in which the fluorescence resonance energy transfer (FRET) between a donor-acceptor pair is mechanically controlled. A cyclic molecule containing a green-light-emitting FRET donor connected to a red-light-emitting FRET acceptor was threaded onto an axle equipped with a quencher at its center and two stoppers in the peripheral positions.
View Article and Find Full Text PDFMechanochromic mechanophores are reporter molecules that indicate mechanical events through changes of their photophysical properties. Supramolecular mechanophores in which the activation is based on the rearrangement of luminophores and/or quenchers without any covalent bond scission, remain less well investigated. Here, we report a cyclophane-based supramolecular mechanophore that contains a 1,6-bis(phenylethynyl)pyrene luminophore and a pyromellitic diimide quencher.
View Article and Find Full Text PDFMechanochromic mechanophores permit the design of polymers that indicate mechanical events through optical signals. Here we report rotaxane-based supramolecular mechanophores that display both reversible and irreversible fluorescence changes. These responses are triggered by different forces and are achieved by exploiting the molecular shuttling function and force-induced dethreading of rotaxanes.
View Article and Find Full Text PDFA red light-emitting photoluminescent supramolecular mechanophore based on an interlocked molecular motif is presented. The rotaxane-based mechanophore contains a cyclic compound featuring a π-extended 4,4-difluoro-4-bora-3a,4a-diaza--indacene (BODIPY) dye as a red emitter that was threaded onto a dumbbell-shaped molecule containing an electron-poor 1,4,5,8-naphthalenetetracarboxylic diimide quencher at its center. Through two aliphatic hydroxyl groups attached to the dumbbell and the cycle, the mechanophore was covalently embedded into the backbone of a thermoplastic polyurethane elastomer.
View Article and Find Full Text PDFImidazo[1,2- a]pyridine derivatives with different hydroxyaryl units (1-3), which could potentially form an intramolecular hydrogen-bonded seven-membered ring in either a planar or a twisted conformation, were newly developed, and the effect of conformation and steric repulsion on the excited-state intramolecular proton transfer (ESIPT) luminescence was evaluated. Among them, 1 and 2 formed an intramolecular hydrogen-bonded seven-membered ring in the crystalline state and exhibited efficient ESIPT luminescence in the solid state (quantum yield up to 0.45).
View Article and Find Full Text PDF