For simple applications, such as the calibration of a charged particle detector, a multi-MeV proton generator may be preferable to cyclotrons or electrostatic accelerators such as Van de Graaff generator. Thus, a proton generating system, consisting of an 18 GHz superconducting (SC)-ECR ion source and a deuterated polyethylene target, was developed at the Research Center for Nuclear Physics at Osaka University. A He beam of 400 eμA was generated by the SC-ECR ion source with the acceleration voltage of 20 kV in an experiment that utilized the fusion reaction He + deuteron (D) → proton(P) + He.
View Article and Find Full Text PDFIn gamma-ray astronomy, the 1-10 MeV range is one of the most challenging energy bands to observe owing to low photon signals and a considerable amount of background contamination. This energy band, however, comprises a substantial number of nuclear gamma-ray lines that may hold the key to understanding the nucleosynthesis at the core of stars, spatial distribution of cosmic rays, and interstellar medium. Although several studies have attempted to improve observation of this energy window, development of a detector for astronomy has not progressed since NASA launched the Compton Gamma Ray Observatory (CGRO) in 1991.
View Article and Find Full Text PDF