Publications by authors named "Tatsuo Nagashima"

Aim: This study determined current international clinical practice and opinions regarding initial fractional inspired oxygen (FiO2 ) and pulse oximetry (SpO2 ) targets for delivery room resuscitation of preterm infants of less than 29 weeks of gestation.

Methods: An online survey was disseminated to neonatal clinicians via established professional clinical networks using a web-based survey programme between March 9 and June 30, 2015.

Results: Of the 630 responses from 25 countries, 60% were from neonatologists.

View Article and Find Full Text PDF

RAS GTPases mediate a wide variety of cellular functions, including cell proliferation, survival, and differentiation. Recent studies have revealed that germline mutations and mosaicism for classical RAS mutations, including those in HRAS, KRAS, and NRAS, cause a wide spectrum of genetic disorders. These include Noonan syndrome and related disorders (RAS/mitogen-activated protein kinase [RAS/MAPK] pathway syndromes, or RASopathies), nevus sebaceous, and Schimmelpenning syndrome.

View Article and Find Full Text PDF

We experimentally demonstrate an all fiber-based, compact add/drop multiplexer (ADM) of a 160 Gbit/s optical time division multiplexed signal using only 1-m length of our fabricated Bi2O3-based step index type optical fiber with an ultra-high nonlinearity of ~1100 W-1.km-1 The ADM is based on the cross phase modulation-induced nonlinear polarization rotation principle and simultaneous add/drop operation was easily achieved by use of a polarization beam splitter after the Bi2O3-based nonlinear fiber. Error-free add/drop operation is readily achieved at multiplexed data rates of both 80 Gbit/s and 160 Gbit/s.

View Article and Find Full Text PDF

We introduce a new figure of merit (FOM) including the input pump power limit associated with stimulated Brillouin scattering (SBS) for evaluation of the Kerr nonlinearity efficiency of optical fibers. The new FOM is expressed as gammaL(eff)P(SBS) (gamma is a nonlinearity parameter, L(eff) is effective length, and P(SBS) is the SBS threshold), while the conventional FOM is given by gammaL(eff). Using the new FOM, we perform an efficiency comparison among four types of state-of-the-art nonlinear optical fiber: a Bi2O3-based nonlinear fiber, a silica-based holey fiber, a highly nonlinear dispersion-shifted fiber, and a conventional dispersion-shifted fiber.

View Article and Find Full Text PDF

We present, for the first time to our knowledge, experimental results of the use of a 1-m-long Bi2O3-based nonlinear fiber (Bi-NLF) with a nonlinear parameter gamma of approximately 1100 W(-1) km(-l) within an all-fiber-based 160Gbit/s optical time-division multiplexing (OTDM) data demultiplexer. Our demultiplexing switch basically uses the principle of the Kerr shutter, and its switching performance is further enhanced by the additional use of the wavelength blueshift of data pulses, which is induced by cross-phase modulation from the control pulse's trailing edge. The OTDM demultiplexer, composed of the 1-m Bi-NLF, readily achieves error-free demultiplexing operation of all 16 channels.

View Article and Find Full Text PDF

We experimentally demonstrate the use of our fabricated 1-m-long Bi2O3 optical fiber (Bi-NLF) with an ultra-high nonlinearity of ~1100 W-1km-1 for wavelength conversion of OTDM signals. With successfully performed fusion splicing of the Bi-NLF to conventional silica fibers an all-fiber wavelength converter is readily implemented by use of a conventional Kerr shutter configuration. Owing to the extremely short fiber length, no additional scheme was employed for suppression of signal polarization fluctuation induced by local birefringence fluctuation, which is usually observed in a long-fiber Kerr shutter.

View Article and Find Full Text PDF

Short lengths of highly nonlinear bismuth-oxide fiber are used to generate smooth supercontinuum spanning from 1200 nm to 1800 nm, with sub-0.5 nJ pulse energies. The spectral broadening in a 2-cm length of this fiber was used to compress 150-fs pulses to 25 fs.

View Article and Find Full Text PDF