Publications by authors named "Tatsuo Gejo"

Time-resolved extreme ultraviolet spectroscopy was used to investigate photodissociation within the iodobenzene C-band. The carbon-iodine bond of iodobenzene was photolyzed at 200 nm, and the ensuing dynamics were probed at 10.3 nm (120 eV) over a 4 ps range.

View Article and Find Full Text PDF

C-I bond extension and fission following ultraviolet (UV, 262 nm) photoexcitation of 2- and 3-iodothiophene is studied using ultrafast time-resolved extreme ultraviolet (XUV) ionization in conjunction with velocity map ion imaging. The photoexcited molecules and eventual I atom products are probed by site-selective ionization at the I 4d edge using intense XUV pulses, which induce multiple charges initially localized to the iodine atom. At C-I separations below the critical distance for charge transfer (CT), charge can redistribute around the molecule leading to Coulomb explosion and charged fragments with high kinetic energy.

View Article and Find Full Text PDF

Hard X-ray electron spectroscopic study of iodine 1s and 2s photoionization of iodomethane (CH3I) and trifluoroiodomethane (CF3I) molecules is presented. The experiment was carried out at the SPring-8 synchrotron radiation facility in Japan. The results are analyzed with the aid of relativistic molecular and atomic calculations.

View Article and Find Full Text PDF

Angle-resolved metastable fragments yields spectra have been measured in the N 1s ionization region of the N(2) and C 1s ionization region of CO. These spectra are compared with zero kinetic energy electron and photoelectron spectra. It has been shown that an isotropic metastable fragments yields spectra are almost identical with the ZEKE spectrum, whereas metastable fragments yields spectra with the Σ-Σ transition show similarity with photoelectron spectra.

View Article and Find Full Text PDF

Inner-shell excitation spectra and fragmentation of small clusters of formic acid have been studied in the oxygen K-edge region by time-of-flight fragment mass spectroscopy. In addition to several fragment cations smaller than the parent molecule, we have identified the production of HCOOH.H+ and H3O+ cations characteristic of proton transfer reactions within the clusters.

View Article and Find Full Text PDF