Yeast is a suitable model system to analyze the mechanism of lifespan. In this study, to identify novel factors involved in chronological lifespan, we isolated a mutant with a long chronological lifespan and found a missense mutation in the sur2+ gene, which encodes a homolog of Saccharomyces cerevisiae sphingolipid C4-hydroxylase in fission yeast. Characterization of the mutant revealed that loss of sur2 function resulted in an extended chronological lifespan.
View Article and Find Full Text PDFChronological lifespan is defined by how long a cell can survive in a non-dividing state. In yeast, it is measured by viability after entry into the stationary phase. To understand the regulatory mechanisms of chronological lifespan in Schizosaccharomyces pombe, it is necessary to identify and characterize novel factors involved in the regulation of chronological lifespan.
View Article and Find Full Text PDF