It is known that Kaniadakis entropy, a generalization of the Shannon-Boltzmann-Gibbs entropic form, is always super-additive for any bipartite statistically independent distributions. In this paper, we show that when imposing a suitable constraint, there exist classes of maximal entropy distributions labeled by a positive real number ℵ>0 that makes Kaniadakis entropy multi-additive, i.e.
View Article and Find Full Text PDFEntropy (Basel)
February 2023
Constitutive relations are fundamental and essential to characterize physical systems. By utilizing the κ-deformed functions, some constitutive relations are generalized. We here show some applications of the Kaniadakis distributions, based on the inverse hyperbolic sine function, to some topics belonging to the realm of statistical physics and natural science.
View Article and Find Full Text PDFA great variety of complex physical, natural and artificial systems are governed by statistical distributions, which often follow a standard exponential function in the bulk, while their tail obeys the Pareto power law. The recently introduced [Formula: see text]-statistics framework predicts distribution functions with this feature. A growing number of applications in different fields of investigation are beginning to prove the relevance and effectiveness of [Formula: see text]-statistics in fitting empirical data.
View Article and Find Full Text PDFThe class of strongly pseudoadditive (SPA) entropies, which can be represented as an increasing continuous transformation of Shannon and Rényi entropies, have intensively been studied in previous decades. Although their mathematical structure has thoroughly been explored and established by generalized Shannon-Khinchin axioms, the analysis of their thermostatistical properties have mostly been limited to special cases which belong to two parameter Sharma-Mittal entropy class, such as Tsallis, Renyi and Gaussian entropies. In this paper we present a general analysis of the strongly pseudoadditive entropies thermostatistics by taking into account both linear and escort constraints on internal energy.
View Article and Find Full Text PDFIn this paper, we present a review of recent developments on the κ -deformed statistical mechanics in the framework of the information geometry. Three different geometric structures are introduced in the κ -formalism which are obtained starting from three, not equivalent, divergence functions, corresponding to the κ -deformed version of Kullback-Leibler, "Kerridge" and Brègman divergences. The first statistical manifold derived from the κ -Kullback-Leibler divergence form an invariant geometry with a positive curvature that vanishes in the κ → 0 limit.
View Article and Find Full Text PDFConstructing a discrete model like a cellular automaton is a powerful method for understanding various dynamical systems. However, the relationship between the discrete model and its continuous analogue is, in general, nontrivial. As a quantum-mechanical cellular automaton, a discrete-time quantum walk is defined to include various quantum dynamical behavior.
View Article and Find Full Text PDF