Cell growth rate is regulated in response to the abundance and molecular form of essential nutrients. InSaccharomyces cerevisiae(budding yeast), the molecular form of environmental nitrogen is a major determinant of cell growth rate, supporting growth rates that vary at least threefold. Transcriptional control of nitrogen use is mediated in large part by nitrogen catabolite repression (NCR), which results in the repression of specific transcripts in the presence of a preferred nitrogen source that supports a fast growth rate, such as glutamine, that are otherwise expressed in the presence of a nonpreferred nitrogen source, such as proline, which supports a slower growth rate.
View Article and Find Full Text PDFDirect lineage conversion is a promising approach to generate therapeutically important cell types for disease modeling and tissue repair. However, the survival and function of lineage-reprogrammed cells in vivo over the long term has not been examined. Here, using an improved method for in vivo conversion of adult mouse pancreatic acinar cells toward beta cells, we show that induced beta cells persist for up to 13 months (the length of the experiment), form pancreatic islet-like structures and support normoglycemia in diabetic mice.
View Article and Find Full Text PDFDrug discovery is a process of multiparameter optimisation, with the objective of finding compounds that achieve multiple, project-specific property criteria. These criteria are often based on the subjective opinion of the project team, but analysis of historical data can help to find the most appropriate profile. Computational 'rule induction' approaches enable an objective analysis of complex data to identify interpretable, multiparameter rules that distinguish compounds with the greatest likelihood of success for a project.
View Article and Find Full Text PDF