Publications by authors named "Tatsiana Lobovkina"

Significant strides have been made in the development of in vitro systems for disease modelling. However, the requirement of microenvironment control has placed limitations on the generation of relevant models. Herein, we present a biological tissue printing approach that employs open-volume microfluidics to position individual cells in complex 2D and 3D patterns, as well as in single cell arrays.

View Article and Find Full Text PDF

We introduce an experimental method based upon a glass micropipette microinjection technique for generating a multitude of interconnected vesicles (IVs) in the interior of a single giant unilamellar phospholipid vesicle (GUV) serving as a cell model system. The GUV membrane, consisting of a mixture of soybean polar lipid extract and anionic phosphatidylserine, is adhered to a multilamellar lipid vesicle that functions as a lipid reservoir. Continuous IV formation was achieved by bringing a micropipette in direct contact with the outer GUV surface and subjecting it to a localized stream of a Ca solution from the micropipette tip.

View Article and Find Full Text PDF

In this study, we have systematically investigated the formation of molecular phospholipid films on a variety of solid substrates fabricated from typical surface engineering materials and the fluidic properties of the lipid membranes formed on these substrates. The surface materials comprise of borosilicate glass, mica, SiO, Al (native oxide), AlO, TiO, ITO, SiC, Au, Teflon AF, SU-8, and graphene. We deposited the lipid films from small unilamellar vesicles (SUVs) by means of an open-space microfluidic device, observed the formation and development of the films by laser scanning confocal microscopy, and evaluated the mode and degree of coverage, fluidity, and integrity.

View Article and Find Full Text PDF

In a wide variety of fundamental cell processes, such as membrane trafficking and apoptosis, cell membrane shape transitions occur concurrently with local variations in calcium ion concentration. The main molecular components involved in these processes have been identified; however, the specific interplay between calcium ion gradients and the lipids within the cell membrane is far less known, mainly due to the complex nature of biological cells and the difficultly of observation schemes. To bridge this gap, a synthetic approach is successfully implemented to reveal the localized effect of calcium ions on cell membrane mimics.

View Article and Find Full Text PDF

Membrane tubular structures are important communication pathways between cells and cellular compartments. Studying these structures in their native environment is challenging, due to the complexity of membranes and varying chemical conditions within and outside of the cells. This work demonstrates that a calcium ion gradient, applied to a synthetic lipid nanotube, triggers lipid flow directed toward the application site, resulting in the formation of a bulge aggregate.

View Article and Find Full Text PDF

Experimental and theoretical studies on ion-lipid interactions predict that binding of calcium ions to cell membranes leads to macroscopic mechanical effects and membrane remodeling. Herein, we provide experimental evidence that a point source of Ca acting upon a negatively charged membrane generates spontaneous curvature and triggers the formation of tubular protrusions that point away from the ion source. This behavior is rationalized by strong binding of the divalent cations to the surface of the charged bilayer, which effectively neutralizes the surface charge density of outer leaflet of the bilayer.

View Article and Find Full Text PDF

Small interfering RNA (siRNA) is a highly potent drug in gene-based therapy with a challenge of being delivered in a sustained manner. Nanoparticle drug delivery systems allow for incorporating and controlled release of therapeutic payloads. We demonstrate that solid lipid nanoparticles can incorporate and provide sustained release of siRNA.

View Article and Find Full Text PDF

Nanoparticles are an essential component in the emerging field of nanomedical imaging and therapy. When deployed in vivo, these materials are typically protected from the immune system by polyethylene glycol (PEG). A wide variety of strategies to coat and characterize nanoparticles with PEG has established important trends on PEG size, shape, density, loading level, molecular weight, charge and purification.

View Article and Find Full Text PDF

A general approach for producing biodegradable nanoparticles for sustained nucleic acid release is presented. The nanoparticles are produced by precipitating a water-in-oil microemulsion in supercritical CO(2). The microemulsion consists of a transfer RNA aqueous solution (water phase), dichloromethane containing poly(l-lactic acid)-poly(ethylene glycol) (oil phase), the surfactant n-octyl β-D-glucopyranoside, and the cosurfactant n-butanol.

View Article and Find Full Text PDF

Bilayer membranes envelope cells as well as organelles, and constitute the most ubiquitous biological material found in all branches of the phylogenetic tree. Cell membrane rupture is an important biological process, and substantial rupture rates are found in skeletal and cardiac muscle cells under a mechanical load. Rupture can also be induced by processes such as cell death, and active cell membrane repair mechanisms are essential to preserve cell integrity.

View Article and Find Full Text PDF

A method for formation of circular lipid nanotubes based on manipulation of nanotube-vesicle networks is presented.

View Article and Find Full Text PDF

We investigate the formation of Y junctions in surfactant nanotubes connecting vesicles. Based on experimental observations of the surfactant flow on the nanotubes, we conclude that a Y junction propagates with a zipperlike mechanism. The surfactants from two nanotube branches undergo 1:1 mixing at the junction, and spontaneously form the extension of the third nanotube branch.

View Article and Find Full Text PDF

We demonstrate that a transition from a compact geometry (sphere) to a structured geometry (several spheres connected by nanoconduits) in nanotube-vesicle networks (NVNs) induces an ordinary enzyme-catalyzed reaction to display wavelike properties. The reaction dynamics can be controlled directly by the geometry of the network, and such networks can be used to generate wavelike patterns in product formation. The results have bearing for understanding catalytic reactions in biological systems as well as for designing emerging wet chemical nanotechnological devices.

View Article and Find Full Text PDF

Entanglements and trefoil knots on surfactant nanotubes in the liquid phase were produced by a combination of network self-organization and micromanipulation. The resulting knots are self-tightening, and the tightening is driven by minimization of surface free energy of the surfactant membrane material. The formation of the knot and the steady-state knot at quasi-equilibrium can be directly followed and localized by using fluorescence microscopy.

View Article and Find Full Text PDF

Methods based on self-assembly, self-organization, and forced shape transformations to form synthetic or semisynthetic enclosed lipid bilayer structures with several properties similar to biological nanocompartments are reviewed. The procedures offer unconventional micro- and nanofabrication routes to yield complex soft-matter devices for a variety of applications for example, in physical chemistry and nanotechnology. In particular, we describe novel micromanipulation methods for producing fluid-state lipid bilayer networks of nanotubes and surface-immobilized vesicles with controlled geometry, topology, membrane composition, and interior contents.

View Article and Find Full Text PDF