Publications by authors named "Tatsiana G Shutava"

Plant polyphenols have poor water solubility, resulting in low bioavailability. In order to overcome this limitation, the drug molecules can be coated with multiple layers of polymeric materials. Microcrystals of quercetin and resveratrol coated with a (PAH/PSS) or (CH/DexS) shell were prepared using the layer-by-layer assembly method; cultured human HaCaT keratinocytes were treated with UV-C, and after that, cells were incubated with native and particulate polyphenols.

View Article and Find Full Text PDF

N-grafted copolymers of chitosan (460 kDa) with poly(N-vinylpyrrolidone) (2.4 kDa) or poly(vinyl alcohol) (2.0 ​kDa) as side chains were synthesized.

View Article and Find Full Text PDF

Layer-by-layer (LbL) films with enhanced resistance to protein adsorption were obtained on the basis of N-grafted copolymers of chitosan with polyethylene glycol (PEG) or dextran (DEX). The copolymers with the backbone molecular weight of 18 and 450 kDa, side chains of PEG of 5.0 and 0.

View Article and Find Full Text PDF

We discuss new trends in Layer-by-Layer (LbL) encapsulation of spherical and tubular cores of 50-150 nm diameter and loaded with drugs. This core size decrease (from few micrometers to a hundred of nanometers) for LbL encapsulation required development of sonication assistant non-washing technique and shell PEGylation to reach high colloidal stability of drug nanocarriers at 2-3mg/mL concentration in isotonic buffers and serum. For 120-170 nm spherical LbL nanocapsules of low soluble anticancer drugs, polyelectrolyte shell thickness controls drug dissolution.

View Article and Find Full Text PDF

150-200 nm diameter capsules containing 60-70 wt % of poorly soluble drugs, paclitaxel and camptothecin, were produced by layer-by-layer (LbL) assembly on drug nanocores in a solution containing uncharged stabilizers. Optimization of capsule shell architecture and thickness allowed for concentrated (3-5 mg/mL) colloids that are stable in isotonic salt buffers. Nanoparticle aggregation during the washless LbL-assembly was prevented by using low molecular weight block-copolymers of poly(amino acids) (poly-L-lysine and poly-L-glutamic acid) with polyethylene glycol (PEG) in combination with heparin and bovine serum albumin at every bilayer building step.

View Article and Find Full Text PDF

Natural polyphenols with previously demonstrated anticancer potential, epigallocatechin gallate (EGCG), tannic acid, curcumin, and theaflavin, were encased into gelatin-based 200 nm nanoparticles consisting of a soft gel-like interior with or without a surrounding LbL shell of polyelectrolytes (polystyrene sulfonate/polyallylamine hydrochloride, polyglutamic acid/poly-l-lysine, dextran sulfate/protamine sulfate, carboxymethyl cellulose/gelatin, type A) assembled using the layer-by-layer technique. The characteristics of polyphenol loading and factors affecting their release from the nanocapsules were investigated. Nanoparticle-encapsulated EGCG retained its biological activity and blocked hepatocyte growth factor (HGF)-induced intracellular signaling in the breast cancer cell line MBA-MD-231 as potently as free EGCG.

View Article and Find Full Text PDF

A new type of protein/polyphenol microcapsules on the basis of naturally occurring polyphenol (-)-epigallocatechin gallate (EGCG) and gelatin, type A, was obtained using the layer-by-layer (LbL) assembly method. The microcapsules show a more pronounced dependence of permeability on molecular weight of permeating substances than commonly used polyallylamine/polystyrene sulfonate capsules. The regularities of EGCG adsorption in alternation with type A and B gelatins have been investigated using quartz crystal microbalance and electrophoretic mobility measurements on microparticles and found to be dependent on gelatin properties.

View Article and Find Full Text PDF

Tannic acid (TA), a high molecular weight polyphenol of natural origin, was assembled in alternation with chitosan (CH) using a layer-by-layer technique. The deposition of tannic acid and chitosan layers on flat supports was monitored by quartz crystal microbalance, UV-vis spectroscopy, and electrophoretic mobility measurements on microparticles. Hollow (TA/CH)4 capsules were built and their permeability as a function of pH and molecular weight of a penetrating compound was investigated.

View Article and Find Full Text PDF

The influence of a catalase (Cat) layer located at different depths in the layer-by-layer hemoglobin/polystyrene sulfonate films with an (Hb/PSS)(20)(-)(x)/(Cat/PSS)/(Hb/PSS)(x) (x = 0-20) architecture on kinetics of hemoglobin degradation under treatment with hydrogen peroxide solutions of different concentrations and features of H(2)O(2) decay in surrounding solutions has been studied. While assembled on the top of the multilayers, the catalase layer shows the highest activity in hydrogen peroxide decomposition. Hemoglobin in such films retains its nativity for a longer period of time.

View Article and Find Full Text PDF

Stable, super-hydrophilic (water contact angle approximately equal to 0 degrees) titanium dioxide nanoparticle thin films have been obtained on substrates with different initial wettability such as glass, poly(methyl methacrylate) and poly(dimethyl siloxane) using layer-by-layer nano-assembly method. Titanium dioxide nanoparticles were alternated with poly(styrene sulfonate) to form films of thickness ranging from 11 nm to 220 nm. The hydrophilicity of these thin films increases with increasing number of deposited PSS/TiO2 bilayers.

View Article and Find Full Text PDF