Publications by authors named "Tatjana N Parac-Vogt"

Understanding the impact of oxidative modification on protein structure and functions is essential for developing therapeutic strategies to combat macromolecular damage and cell death. However, selectively inducing oxidative modifications in proteins remains challenging. Herein we demonstrate that [V6O13{(OCH2)3CCH2OH}2]2- (V6-OH) hybrid metal-oxo cluster can be used for selective protein oxidative cleavage and modifications.

View Article and Find Full Text PDF

The confinement effects within coordination cages present powerful tools in modern chemistry, particularly for the synthesis and manipulation of complex molecules. This concept article reviews the use of coordination cages to stabilize and tune the properties of polyoxometalates (POMs), a class of nano-sized metallic clusters, expanding the focus beyond traditional organic reactions. The article provides a brief overview of coordination cages, POM chemistry and discusses the encapsulation of POMs in coordination cages, highlighting how these cages provide a confinement effect that enhances the stability and reactivity of POMs.

View Article and Find Full Text PDF

Supramolecular functional materials can be used to overcome some of the most challenging tasks in materials science, where the dynamic nature of supramolecular interactions can be leveraged to fine-tune the properties of the material for a given task. The Lindqvist hexavanadate family of polyoxometalates (POMs) have emerged as particularly interesting candidates to be used in supramolecular materials due to their redox and Lewis acid properties that enable their application in the fields of energy conversion/storage or catalysis. Despite their promising potential, hexavanadate clusters are underrepresented in the field of supramolecular materials, mainly due to the synthetic challenges related to their inherent reactivity.

View Article and Find Full Text PDF

Group (IV) metal oxo clusters represent a unique family of molecular species that are increasingly being utilized in applications ranging from catalysis and materials chemistry to electronics, and sensors. These clusters exhibit distinctive structural features, chemical reactivity, and electronic structure. Nevertheless, their full potential has yet to be fully realized due to the lack of deeper understanding regarding their structure and formation mechanisms, inherent traits, and intricacies in their design, which could ultimately enable significant customization of their properties and overall behaviour.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding the behavior of earth-abundant metals in catalysis is crucial since their reactivity and forms often complicate their efficiency.
  • This study highlights the formation of zirconium oxo clusters under operational conditions, which act as active species in direct amide bond formations, eliminating the need for additional organic ligands or special environments.
  • Techniques like EXAFS and computational methods confirm these findings, emphasizing the importance of intrinsic solution chemistry in improving catalytic processes and sustainability.
View Article and Find Full Text PDF

Effective degradation of non-natural phosphate triesters (PTs) widely used in pesticides and warfare agents is of paramount relevance for human and environmental safety, particularly under acidic conditions where they are highly stable. Here, we present a detailed reactivity and mechanistic study pioneering discrete {ZrO} clusters, which are commonly employed as building blocks for Zr-MOFs and as non-classical soluble coordination compounds for the degradation of PTs using the pesticide ethyl paraoxon as a model. Combined computational studies, mechanistic experiments, and EXAFS analysis show that the reactivity of these clusters arises from their Zr-Zr bimetallic sites, which hydrolyze ethyl paraoxon under acidic conditions through an intramolecular pathway.

View Article and Find Full Text PDF

Metal-organic frameworks (MOFs) have the potential to revolutionize the biotechnological and medical landscapes due to their easily tunable crystalline porous structure. Herein, the study presents MOFs' potential impact on proteomics, unveiling the diverse roles MOFs can play to boost it. Although MOFs are excellent catalysts in other scientific disciplines, their role as catalysts in proteomics applications remains largely underexplored, despite protein cleavage being of crucial importance in proteomics protocols.

View Article and Find Full Text PDF

The interactions of polyoxovanadates (POVs) with proteins have increasingly attracted interest in recent years due to their potential biomedical applications. This is especially the case because of their redox and catalytic properties, which make them interesting for developing artificial metalloenzymes. Organic-inorganic hybrid hexavanadates in particular offer several advantages over all-inorganic POVs.

View Article and Find Full Text PDF
Article Synopsis
  • The study highlights the significance of size and defects in crystalline inorganic materials, especially in catalysis, where these factors can enhance performance.
  • A new sustainable strategy is introduced for creating ultra-small tetravalent Metal-Organic Frameworks (MOFs) with high defect levels, demonstrating improved properties for specific reactions.
  • The ultra-small MOFs exhibit exceptional catalytic performance, showing promise for developing versatile heterogeneous catalysts that can be tailored for different reactions by altering the solvent used.
View Article and Find Full Text PDF

The development of catalysts for controlled fragmentation of proteins is a critical undertaking in modern proteomics and biotechnology. {ZrO}-based metal-organic frameworks (MOFs) have emerged as promising candidates for catalysis of peptide bond hydrolysis due to their high reactivity, stability, and recyclability. However, emerging evidence suggests that protein hydrolysis mainly occurs on the MOF surface, thereby questioning the need for their highly porous 3D nature.

View Article and Find Full Text PDF

Polyoxotungstate nanoclusters have recently emerged as promising contrast agents for computed tomography (CT). In order to evaluate their clinical potential, in this study, we evaluated the in vitro CT imaging properties, potential toxic effects in vivo, and tissue distribution of monolacunary Wells-Dawson polyoxometalate, α-KPWO20HO (mono-WD POM). Mono-WD POM showed superior X-ray attenuation compared to other tungsten-containing nanoclusters (its parent WD-POM and Keggin POM) and the standard iodine-based contrast agent (iohexol).

View Article and Find Full Text PDF

The artificial microenvironments inside coordination cages have gained significant attention for performing enzyme-like catalytic reactions by facilitating the formation of labile and complex molecules through a "ship-in-a-bottle" approach. Despite many fascinating examples, this approach remains scarcely explored in the context of synthesizing metallic clusters such as polyoxometalates (POMs). The development of innovative approaches to control and influence the speciation of POMs in aqueous solutions would greatly advance their applicability and could ultimately lead to the formation of elusive clusters that cannot be synthesized by using traditional methods.

View Article and Find Full Text PDF

Controlling the formation of supramolecular protein assemblies and endowing them with new properties that can lead to novel functional materials is an important but challenging task. In this work, a new hybrid polyoxometalate is designed to induce controlled intermolecular bridging between biotin-binding proteins. Such bridging interactions lead to the formation of supramolecular protein assemblies incorporating metal-oxo clusters that go from several nanometers in diameter up to the micron range.

View Article and Find Full Text PDF

Metal-oxo clusters hold great potential in several fields such as catalysis, materials science, energy storage, medicine, and biotechnology. These nanoclusters of transition metals with oxygen-based ligands have also shown promising reactivity towards several classes of biomolecules, including proteins, nucleic acids, nucleotides, sugars, and lipids. This reactivity can be leveraged to address some of the most pressing challenges we face today, from fighting various diseases, such as cancer and viral infections, to the development of sustainable and environmentally friendly energy sources.

View Article and Find Full Text PDF
Article Synopsis
  • Bimetallic metal-organic frameworks (MOFs) have potential for reactivity with biomolecules but face challenges like stability and synthesis control.
  • A new synthesis method for Zr/Ce-MOFs in a water/acetic acid mixture creates stable materials with effective nanozymatic reactivity, even for typically unstable high-cerium MOFs.
  • Advanced characterization techniques confirm that modifications in synthesis and Ce incorporation lead to superior nanozymes, suggesting similar approaches could enhance the development of other bimetallic MOF nanozymes for biotechnology.
View Article and Find Full Text PDF

In this study, we demonstrate for the first time, that a discrete metal-oxo cluster α-/β-KPWO (WD-POM) exhibits superior performance as a computed tomography (CT) contrast agent, in comparison to the standard contrast agent iohexol. A toxicity evaluation of WD-POM was performed according to standard toxicological protocols using Wistar albino rats. The maximum tolerable dose (MTD) of 2000 mg/kg was initially determined after oral WD-POM application.

View Article and Find Full Text PDF

Paving the way towards new functional materials relies increasingly on the challenging task of forming organic-inorganic hybrid compounds. In that regard, discrete atomically-precise metal-oxo nanoclusters have received increasing attention due to the wide range of organic moieties that can be grafted onto them through functionalization reactions. The Lindqvist hexavanadate family of clusters, such as [VO{(OCH)C-R}] (V-R), is particularly interesting due to the magnetic, redox, and catalytic properties of these clusters.

View Article and Find Full Text PDF

The latest advances in the study of the reactivity of metal-oxo clusters toward proteins showcase how fundamental insights obtained so far open new opportunities in biotechnology and medicine. In this Perspective, these studies are discussed through the lens of the reactivity of a family of soluble anionic metal-oxo nanoclusters known as polyoxometalates (POMs). POMs act as catalysts in a wide range of reactions with several different types of biomolecules and have promising therapeutic applications due to their antiviral, antibacterial, and antitumor activities.

View Article and Find Full Text PDF

Interactions between the protein Hen Egg White Lysozyme (HEWL) and three different hybrid Anderson-Evans polyoxometalate clusters - AE-NH2 (δ-[MnMoO{(OCH)CNH}]), AE-CH3 (δ-[MnMoO{(OCH)CCH}]) and AE-Biot (δ-[MnMoO{(OCH)CNHCOCHNOS}]) - were studied tryptophan fluorescence spectroscopy and single crystal X-ray diffraction. Quenching of tryptophan fluorescence was observed in the presence of all three hybrid polyoxometalate clusters (HPOMs), but the extent of quenching and the binding affinity were greatly dependent on the nature of the organic groups attached to the cluster. Control experiments further revealed the synergistic effect of the anionic polyoxometalate core and organic ligands towards enhanced protein interactions.

View Article and Find Full Text PDF

The specific interactions of anionic metal-oxo clusters, known as polyoxometalates (POMs), with proteins can be leveraged for a wide range of analytical and biomedical applications. For example, POMs have been developed as selective catalysts that can induce protein modifications and have also been shown to facilitate protein crystallization, both of which are instrumental in the structural characterization of proteins. POMs can also be used for selective protein separation and enzyme inhibition, which makes them promising therapeutic agents.

View Article and Find Full Text PDF

Oxidative modifications of proteins are key to many applications in biotechnology. Metal-catalyzed oxidation reactions efficiently oxidize proteins but with low selectivity, and are highly dependent on the protein surface residues to direct the reaction. Herein, we demonstrate that discrete inorganic ligands such as polyoxometalates enable an efficient and selective protein oxidative cleavage.

View Article and Find Full Text PDF

Hybrid structures incorporating different organic and inorganic constituents are emerging as a very promising class of materials since they synergistically combine the complementary and diverse properties of the individual components. Hybrid materials based on polyoxometalate clusters (POMs) are particularly interesting due to their versatile catalytic, redox, electronic, and magnetic properties, yet the controlled incorporation of different clusters into a hybrid structure is challenging and has been scarcely reported. Herein we propose a novel and general strategy for combining multiple types of metal-oxo clusters in a single hybrid molecule.

View Article and Find Full Text PDF

The discovery of nanozymes for selective fragmentation of proteins would boost the emerging areas of modern proteomics, however, the development of efficient and reusable artificial catalysts for peptide bond hydrolysis is challenging. Here we report the catalytic properties of a zirconium metal-organic framework, MIP-201, in promoting peptide bond hydrolysis in a simple dipeptide, as well as in horse-heart myoglobin (Mb) protein that consists of 153 amino acids. We demonstrate that MIP-201 features excellent catalytic activity and selectivity, good tolerance toward reaction conditions covering a wide range of pH values, and importantly, exceptional recycling ability associated with easy regeneration process.

View Article and Find Full Text PDF