Constant exposure of the airways to inhaled pathogens requires efficient early immune responses protecting against infections. How bacteria on the epithelial surface are detected and first-line protective mechanisms are initiated are not well understood. We have recently shown that tracheal brush cells (BCs) express functional taste receptors.
View Article and Find Full Text PDFThe most widely used formalin test to screen antinociceptive drug candidates is still apostrophized as targeting inflammatory pain, in spite of strong opposing evidence published. In our rat skin-nerve preparation ex vivo, recording from all classes of sensory single-fibers (n = 32), 30 units were transiently excited by formaldehyde concentrations 1-100 mM applied to receptive fields (RFs) for 3 min, C and Aδ-fibers being more sensitive (1-30 mM) than Aβ-fibers. From 30 mM on, ~1% of the concentration usually injected in vivo, all RFs were defunctionalized and conduction in an isolated sciatic nerve preparation was irreversibly blocked.
View Article and Find Full Text PDFBackground: PUVA (psoralen UVA) therapy is used to treat a variety of skin conditions, such as vitiligo psoriasis, eczema and mycosis fungoides, but it is frequently accompanied by phototoxicity leading to burning pain, itch and erythema.
Methods: We used a combination of calcium and reactive oxygen species (ROS) imaging, patch clamp and neuropeptide release measurement to investigate whether certain ion channels involved in pain and itch signalling could be responsible for these adverese effects of PUVA.
Results: Clinically used psoralen derivatives 8-methoxypsoralen (8-MOP) and 5-methoxypsoralen at physiologically relevant concentrations were able to activate and photosensitize two recombinant thermoTRP (temperature-gated Transient Receptor Potential) ion channels, TRPA1 (Transient Receptor Potential Ankyrin type 1) and TRPV1 (Transient Receptor Potential Vanilloid type 1).
Spices in food and beverages and compounds in tobacco smoke interact with sensory irritant receptors of the transient receptor potential (TRP) cation channel family. TRPV1 (vanilloid type 1), TRPA1 (ankyrin 1) and TRPM8 (melastatin 8) not only elicit action potential signaling through trigeminal nerves, eventually evoking pungent or cooling sensations, but by their calcium conductance they also stimulate the release of calcitonin gene-related peptide (CGRP). This is measured as an index of neuronal activation to elucidate the chemo- and thermosensory transduction in the isolated mouse buccal mucosa of wild types and pertinent knockouts.
View Article and Find Full Text PDFLoss-of-function mutations in the enzyme 7-dehydrocholesterol reductase are responsible for the Smith-Lemli-Opitz syndrome, in which 7-dehydrocholesterol (7-DHC) levels are markedly increased in the plasma and tissues of patients. This increase in 7-DHC is probably associated with the painful and itchy photosensitivity reported by the majority of patients with Smith-Lemli-Opitz syndrome. To identify the molecular targets involved in the activation and photosensitization of primary afferents by 7-DHC, we focused on TRPA1 and TRPV1, two ion channels expressed in nociceptive nerve endings and previously shown to respond to ultraviolet and visible light under pathophysiological circumstances.
View Article and Find Full Text PDFCrotalphine is a structural analogue to a novel analgesic peptide that was first identified in the crude venom from the South American rattlesnake Crotalus durissus terrificus. Although crotalphine's analgesic effect is well established, its direct mechanism of action remains unresolved. The aim of the present study was to investigate the effect of crotalphine on ion channels in peripheral pain pathways.
View Article and Find Full Text PDFThermosensitive Transient Receptor Potential (TRP) channels are believed to respond to either cold or heat. In the case of TRP subtype A1 (TRPA1), there seems to be a species-dependent divergence in temperature sensation as non-mammalian TRPA1 is heat-sensitive whereas mammalian TRPA1 is sensitive to cold. It has been speculated but never experimentally proven that TRPA1 and other temperature-sensitive ion channels have the inherent capability of responding to both cold and heat.
View Article and Find Full Text PDFUnlabelled: Photosensitization, an exaggerated sensitivity to harmless light, occurs genetically in rare diseases, such as porphyrias, and in photodynamic therapy where short-term toxicity is intended. A common feature is the experience of pain from bright light. In human subjects, skin exposure to 405 nm light induced moderate pain, which was intensified by pretreatment with aminolevulinic acid.
View Article and Find Full Text PDFTaurolidine has long been in clinical use as an antimicrobial irrigation that does not impede wound healing. It can even be administered intravenously (30 g/day) to treat sepsis or to exert newly recognized antineoplastic actions. Only one irritant effect is reported, that is, to temporarily induce burning pain of unknown origin when applied to body cavities or peripheral veins.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
October 2015
Cigarette smoke (CS) exposes chemosensory nerves in the airways to a multitude of chemicals, some acting through the irritant receptors TRPV1 and TRPA1 but potentially also through nicotinic acetylcholine receptors (nAChR). Our aim was to characterize the differences in sensory neuronal effects of CS, gas phase, and particulate matter as well as of typical constituents, such as nicotine and reactive carbonyls. Isolated mouse trachea and larynx were employed to measure release of calcitonin gene-related peptide (CGRP) as an index of sensory neuron activation evoked by CS, by filtered CS gas phase essentially free of nicotine, and by dilute total particulate matter (TPM) containing defined nicotine concentrations.
View Article and Find Full Text PDFBackground: Irritating effects of volatile general anesthetics on tracheal nerve endings and resulting spastic reflexes in the airways are not completely understood with respect to molecular mechanisms. Neuropeptide release and neurogenic inflammation play an established role.
Methods: The basal and stimulated calcitonin gene-related peptide (CGRP) release from the isolated superfused mouse trachea was analyzed as an index of sensory neuron activation, applying irritant (desflurane and isoflurane) and nonirritant (sevoflurane) volatile anesthetics as stimuli.
Nitroxyl (HNO) is a redox sibling of nitric oxide (NO) that targets distinct signalling pathways with pharmacological endpoints of high significance in the treatment of heart failure. Beneficial HNO effects depend, in part, on its ability to release calcitonin gene-related peptide (CGRP) through an unidentified mechanism. Here we propose that HNO is generated as a result of the reaction of the two gasotransmitters NO and H2S.
View Article and Find Full Text PDFHigh concentrations of nicotine, as in the saliva of oral tobacco consumers or in smoking cessation aids, have been shown to sensitize/activate recombinant transient receptor potential vanilloid type 1 (rTRPV1) and mouse TRPA1 (mTRPA1) channels. By measuring stimulated calcitonin gene-related peptide (CGRP) release from the isolated mouse trachea, we established a bimodal concentration-response relationship with a threshold below 10 µM (-)-nicotine, a maximum at 100 µM, an apparent nadir between 0.5 and 10 mM, and a renewed increase at 20 mM.
View Article and Find Full Text PDFThis study establishes a mechanism for metabolic hyperalgesia based on the glycolytic metabolite methylglyoxal. We found that concentrations of plasma methylglyoxal above 600 nM discriminate between diabetes-affected individuals with pain and those without pain. Methylglyoxal depolarizes sensory neurons and induces post-translational modifications of the voltage-gated sodium channel Na(v)1.
View Article and Find Full Text PDFBackground & Aims: The neuropeptides calcitonin gene-related peptide (CGRP) and substance P, and calcium channels, which control their release from extrinsic sensory neurons, have important roles in experimental colitis. We investigated the mechanisms of colitis in 2 different models, the involvement of the irritant receptor transient receptor potential of the ankyrin type-1 (TRPA1), and the effects of CGRP and substance P.
Methods: We used calcium-imaging, patch-clamp, and neuropeptide-release assays to evaluate the effects of 2,4,6-trinitrobenzene-sulfonic-acid (TNBS) and dextran-sulfate-sodium-salt on neurons.
Chronic cough derives from inflammatory hypersensitivity of tracheobronchial nerve endings, most of which express the polymodal capsaicin receptor-channel transient receptor potential vanilloid (TRPV) type 1 and the secretory neuropeptide calcitonin gene-related peptide (CGRP). An isolated mouse trachea preparation was established to measure chemically and thermally stimulated CGRP release as an index for sensory transduction of potential cough-inducing stimuli. TRPV1 knockout mice were employed to assess the TRPV1 contribution to tracheal responsiveness and sensitization.
View Article and Find Full Text PDFThe capsaicin receptor in nociceptive neurons is a target for the sensitizing actions of algogenic inflammatory mediators. Capsaicin and potential endogenous ligands are thought not to gate this heat-activated ion channel but to sensitize it so profoundly that even room temperature can open it. We investigated the temperature dependency of capsaicin-induced CGRP release from nociceptive nerve fibers in isolated rat skin over a range of ambient temperatures using different agonist concentrations (10(-7)-10(-5)M) and KCl (60 mM) for control.
View Article and Find Full Text PDF