Artificial sweeteners are receiving increasing attention as newly recognized emerging contaminants that mainly reach the aquatic environment through the discharge of municipal wastewater containing large amount of these compounds. In this study, the impact of raw untreated wastewater discharges on the levels and the water/sediment distribution of artificial sweeteners in the Danube River and its largest tributaries in Serbia was evaluated, and a comprehensive assessment of environmental risks for freshwater and benthic organisms was performed. Acesulfame and sucralose were detected in all river water samples (100%), while saccharin (59%) and cyclamate (12%) were less frequently found, indicating long-term continuous sewage-derived pollution.
View Article and Find Full Text PDFA priori estimation of analyte response is crucial for the efficient development of liquid chromatography-electrospray ionization/mass spectrometry (LC-ESI/MS) methods, but remains a demanding task given the lack of knowledge about the factors affecting the experimental outcome. In this research, we address the challenge of discovering the interactive relationship between signal response and structural properties, method parameters and solvent-related descriptors throughout an approach featuring quantitative structure-property relationship (QSPR) and design of experiments (DoE). To systematically investigate the experimental domain within which QSPR prediction should be undertaken, we varied LC and instrumental factors according to the Box-Behnken DoE scheme.
View Article and Find Full Text PDFDispersive liquid-liquid microextraction (DLLME) using a floating organic drop has been optimized and used for the sample preparation of four commonly used ultraviolet filter (UVF) substances in sunscreens. Plackett-Burman experimental design was used to screen 10 variables in DLLME. The most significant variables were then optimized by using a response surface method with a Box-Behnken design.
View Article and Find Full Text PDFCarbon materials of different structural and textural properties (multi-walled carbon nanotubes, carbon cryogel, and carbonized hydrothermal carbon) were used as adsorbents for the removal of estrone, 17β-estradiol, and 17α-ethinylestradiol from aqueous solutions. Chemical modification and/or activation were applied to alter surface characteristics and to increase the adsorption and desorption efficiency of carbon materials. Surfaces of treated and untreated carbon materials were characterized through the examination of the textural properties, the nature of surface functional groups, and surface acidity.
View Article and Find Full Text PDFIn this paper, pristine and chemically treated multi-walled carbon nanotubes (MWCNTs) were employed as solid-phase extraction sorbents for the isolation and enrichment of multi-class pharmaceuticals from the surface water and groundwater, prior to liquid chromatography-tandem mass spectrometry analysis. Thirteen pharmaceuticals that belong to different therapeutical classes (erythromycin, azithromycin, sulfamethoxazole, diazepam, lorazepam, carbamazepine, metoprolol, bisoprolol, enalapril, cilazapril, simvastatin, clopidogrel, diclofenac) and two metabolites of metamizole (4-acetylaminoantipyrine and 4-formylaminoantipyrine) were selected for this study. The influence of chemical treatment on MWCNT surface characteristics and extraction efficiency was studied, and it was shown that HCl treatment of MWCNT leads to a decrease in the amount of surface oxygen groups and at the same time favorably affects the efficiency toward extraction of selected pharmaceuticals.
View Article and Find Full Text PDF