Publications by authors named "Tatineni Satyanarayana"

Triticum mosaic virus (TriMV; Poacevirus tritici) is the founding member of the genus Poacevirus within the family Potyviridae. TriMV is one of the components of the wheat streak mosaic disease (WSMD) complex, an economically significant wheat disease in the Great Plains region of the USA. TriMV contains a single-stranded positive-sense RNA genome of 10,266 nts with an unusually long 5'-nontranslated region of 739 nts.

View Article and Find Full Text PDF

In plants, RNA interference (RNAi) serves as a critical defense mechanism against viral infections by regulating gene expression. However, viruses have developed RNA silencing suppressor (RSS) proteins to evade this defense mechanism. The High Plains wheat mosaic virus (HPWMoV) is responsible for the High Plains disease in wheat and produces P7 and P8 proteins, which act as RNA silencing suppressors.

View Article and Find Full Text PDF

Synergistic interactions among unrelated viruses in mixed infections can cause significant yield losses, and viral determinants of these interactions are poorly understood. Wheat ( L.) co-infection with wheat curl mite-transmitted wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) results in disease synergism with a drastically increased symptom phenotype of stunted growth, leaf bleaching, and enhanced titers of both viruses.

View Article and Find Full Text PDF

Triticum mosaic virus (TriMV, genus , family ) was first reported in 2006 (Seifers et al. 2008) to infect wheat, and since then, it has been established as a constraint for US wheat production (Byamukama et al. 2013).

View Article and Find Full Text PDF

Plant diseases significantly impact food security and food safety. It was estimated that food production needs to increase by 50% to feed the projected 9.3 billion people by 2050.

View Article and Find Full Text PDF

Triticum mosaic virus (TriMV; genus ; family ) is an economically important virus in the Great Plains region of the United States. TriMV is transmitted by the wheat curl mite () Type 2 genotype but not by Type 1. Helper component-proteinase (HC-Pro) is a vector transmission determinant for several potyvirids, but the role of HC-Pro in TriMV transmission is unknown.

View Article and Find Full Text PDF

Background: Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV) are components of the wheat streak mosaic virus disease complex in the Great Plains region of the U.S.A.

View Article and Find Full Text PDF

Triticum mosaic virus (TriMV), the type species of the genus Poacevirus in the family Potyviridae, is an economically important wheat curl mite-transmitted wheat-infecting virus in the Great Plains region of the USA. In this study, the functional genomics of helper component-proteinase (HC-Pro) encoded by TriMV was examined using a reverse genetics approach. TriMV with complete deletion of HC-Pro cistron elicited systemic infection in wheat, indicating that HC-Pro cistron is dispensable for TriMV systemic infection.

View Article and Find Full Text PDF

Switchgrass ( L.) can be infected by the rust pathogen () and results in lowering biomass yields and quality. Label-free quantitative proteomics was conducted on leaf extracts harvested from non-infected and infected plants from a susceptible cultivar (Summer) at 7, 11, and 18 days after inoculation (DAI) to follow the progression of disease and evaluate any plant compensatory mechanisms to infection.

View Article and Find Full Text PDF

Superinfection exclusion (SIE) is an antagonistic interaction between identical or closely related viruses in host cells. Previous studies by us and others led to the hypothesis that SIE was elicited by one or more proteins encoded in the genomes of primary viruses. Here, we tested this hypothesis using Turnip mosaic virus (TuMV), a member of the genus of the family , with significant economic consequences.

View Article and Find Full Text PDF

Wheat streak mosaic virus (WSMV; genus , family ) is the causal agent of the most economically important wheat streak mosaic disease of wheat () in the Great Plains region of the United States. WSMV determinants responsible for wheat streak mosaic disease in wheat are unknown. Triticum mosaic virus (TriMV), a wheat-infecting virus, was used as an expression vector for the transient expression of each of the WSMV-encoded cistrons in wheat.

View Article and Find Full Text PDF

Plant viruses cause significant losses in agricultural crops worldwide, affecting the yield and quality of agricultural products. The emergence of novel viruses or variants through genetic evolution and spillover from reservoir host species, changes in agricultural practices, mixed infections with disease synergism, and impacts from global warming pose continuous challenges for the management of epidemics resulting from emerging plant virus diseases. This review describes some of the most devastating virus diseases plus select virus diseases with regional importance in agriculturally important crops that have caused significant yield losses.

View Article and Find Full Text PDF

Panicum mosaic virus (PMV), the type member of the genus Panicovirus in the family Tombusviridae, naturally infects switchgrass (Panicum virgatum L.). PMV and its molecular partner, satellite panicum mosaic virus (SPMV), interact synergistically in coinfected millets to exacerbate the disease phenotype and increase the accumulation of PMV compared to plants infected with PMV alone.

View Article and Find Full Text PDF

Field-grown wheat ( L.) plants can be co-infected by multiple viruses, including wheat streak mosaic virus (WSMV), Triticum mosaic virus (TriMV), brome mosaic virus (BMV), and barley stripe mosaic virus (BSMV). These viruses belong to four different genera in three different families and are, hence, genetically divergent.

View Article and Find Full Text PDF

Brief History: In 1993, severe mosaic and necrosis symptoms were observed on corn (maize) and wheat from several Great Plains states of the USA. Based on the geographical location of infections, the disease was named High Plains disease and the causal agent was tentatively named High Plains virus. Subsequently, researchers renamed this virus as maize red stripe virus and wheat mosaic virus to represent the host and symptom phenotype of the virus.

View Article and Find Full Text PDF

Given the importance of and rapid research progress in plant virology in recent years, this Focus Issue broadly emphasizes advances in fundamental aspects of virus infection cycles and epidemiology. This Focus Issue comprises three review articles and 18 research articles. The research articles cover broad research areas on the identification of novel viruses, the development of detection methods, reverse genetics systems and functional genomics for plant viruses, vector and seed transmission studies, viral population studies, virus-virus interactions and their effect on vector transmission, and management strategies of viral diseases.

View Article and Find Full Text PDF

We recently reported that the p28 auxiliary replication protein encoded by turnip crinkle virus (TCV) is also responsible for eliciting superinfection exclusion (SIE) against superinfecting TCV. However, it remains unresolved whether the replication function of p28 could be separated from its ability to elicit SIE. Here, we report the identification of two single amino acid mutations that decouple these two functions.

View Article and Find Full Text PDF

Wheat streak mosaic virus (WSMV) and triticum mosaic virus (TriMV) are economically important viruses of wheat ( L.), causing significant yield losses in the Great Plains region of the United States. These two viruses are transmitted by wheat curl mites, which often leads to mixed infections with synergistic interaction in grower fields that exacerbates yield losses.

View Article and Find Full Text PDF

The genetics and responses to biotic stressors of tetraploid switchgrass (Panicum virgatum L.) lowland cultivar 'Kanlow' and upland cultivar Summer are distinct and can be exploited for trait improvement. In general, there is a paucity of data on the basal differences in transcription across tissue developmental times for switchgrass cultivars.

View Article and Find Full Text PDF

High Plains wheat mosaic virus (genus Emaravirus), an octapartite negative-sense RNA virus, encodes two RNA silencing suppressors, P7 and P8. In this study, we found that P7 and P8 efficiently delayed the onset of dsRNA-induced transitive pathway of RNA silencing. Electrophoretic mobility shift assays (EMSA) revealed that only P7 protected long dsRNAs from dicing in vitro and bound weakly to 21- and 24-nt PTGS-like ds-siRNAs.

View Article and Find Full Text PDF

Triticum mosaic virus (TriMV) is the exemplar strain of the type species of the genus Poacevirus in the family Potyviridae infecting wheat in the Great Plains region of the USA. Previously, we reported that the P1 protein of TriMV is a viral suppressor of RNA silencing. Mutational analyses of P1 showed that deletion of 55 N-terminal amino acids, and a single amino acid at the C-terminus retained its ability to suppress ssGFP-induced RNA silencing.

View Article and Find Full Text PDF

(WSMV; genus ; family ) is an economically important virus infecting wheat in the Great Plains region of the USA. Previously, we reported that the P1 protein of WSMV acts as a viral suppressor of RNA silencing. In this study, we delineated the minimal region of WSMV P1 and examined its mechanisms in suppression of RNA silencing.

View Article and Find Full Text PDF

Wheat streak mosaic virus (WSMV; genus Tritimovirus; family Potyviridae) is an economically important wheat virus that is transmitted by the wheat curl mite (WCM; Aceria tosichella Keifer) in a persistent manner. Virus-vector coevolution may potentially influence vector gene expression to prolong viral association and thus increase virus transmission efficiency and spread. To understand the transcriptomic responses of WCM to WSMV, RNA sequencing was performed to assemble and analyse transcriptomes of WSMV viruliferous and aviruliferous mites.

View Article and Find Full Text PDF

Panicum mosaic virus (PMV) (genus Panicovirus, family Tombusviridae) and its molecular parasite, Satellite panicum mosaic virus (SPMV), synergistically interact in coinfected proso and pearl millet (Panicum miliaceum L.) plants resulting in a severe symptom phenotype. In this study, we examined synergistic interactions between the isolates of PMV and SPMV by using PMV-NE, PMV85, SPMV-KS, and SPMV-Type as interacting partner viruses in different combinations.

View Article and Find Full Text PDF

Wheat streak mosaic virus (WSMV) and Triticum mosaic virus (TriMV), distinct members in the family Potyviridae, are economically important wheat-infecting viruses in the Great Plains region. Previously, we reported that coinfection of wheat by WSMV and TriMV caused disease synergism with increased concentration of both viruses. The mechanisms of synergistic interaction between WSMV and TriMV and the effects of prior infection of wheat by either of these "synergistically interacting partner" (SIP) viruses on the establishment of local and systemic infection by the other SIP virus are not known.

View Article and Find Full Text PDF