Publications by authors named "Tatiani A G Donato"

This study aimed to produce Ti-15Nb alloy with a low elastic modulus, verify its biocompatibility, and determine whether the alloy indirectly influences cellular viability and morphology, as well as the development of the osteogenic phenotype in cells cultured for 2, 3, and 7 days derived from rat calvarias. Two heat treatments were performed to modify the mechanical properties of the alloy where the Ti-15Nb alloy was heated to 1000 °C followed by slow (-5 °C/min) (SC) and rapid cooling (RC). The results of structural and microstructural characterization (XRD and optical images) showed that the Ti-15Nb alloy was of the α + β type, with slow cooling promoting the formation of the α phase and rapid cooling the formation of the β phase, altering the values for the hardness and elastic modulus.

View Article and Find Full Text PDF

Paracoccidioidomycosis (PCM) is a systemic granulomatous fungal infection caused by thermally dimorphic fungi of the genus . Endemic in Latin America, PCM presents with high incidence in Brazil, Colombia, and Venezuela, especially among rural workers. The main clinical types are acute/subacute (AF) form and chronic form (CF).

View Article and Find Full Text PDF

Due to excellent biocompatibility and corrosion resistance, the application of titanium alloys in orthopedic and dental implants has been increasing since the 1970s. However, the elasticity of these alloys as measured by their Young's modulus is still about two to four times higher than that of human cortical bone. The most widely used titanium alloy for biomedical applications is Ti-6Al-4V, however, previous studies have shown that the vanadium used in this alloy causes allergic reactions in human tissue and aluminum, also used in the alloy, has been associated with neurological disorders.

View Article and Find Full Text PDF

Titanium alloys have been widely used as biomaterials, especially for orthopedic prostheses and dental implants, but these materials have Young's modulus almost three times greater than human cortical bones. Because of this, new alloys are being produced for the propose of decreasing Young's modulus to achieve a more balanced mechanical compatibility with the bone. In this paper, it is reported the development of Ti-25Ta alloys as a base material, in which was introduced zirconium, with concentration varying between 0 and 40 wt%, with the aim of biomedical applications.

View Article and Find Full Text PDF

Titanium alloys are widely used in the biomedical field due to their excellent resistance to corrosion, high mechanical strength/density ratio, low elastic modulus, and good biocompatibility. Niobium is a β-stabilizer element that has the potential to decrease elastic modulus and possesses excellent corrosion resistance. In this article, Ti-15Nb alloy was prepared via arc-melting, with the aim of using it in biomedical applications to replace implants that fail due to mechanical incompatibility with human bone.

View Article and Find Full Text PDF

In this study, we have analyzed the viability and cell growth, as well as, the mineralization of extracellular matrix (ECM) by alizarin red and von Kossa staining of calvaria-derived osteogenic cultures, treated with TGF-β1 alone or associated with Dex comparing with acid ascorbic (AA) + β-glicerophosphate (βGP) (positive mineralization control). The expression of the noncollagenous proteins bone sialoprotein (BSP), osteopontin (OPN) and fibronectin (FN) were evaluated by indirect immunofluorescence. In addition, the main ultrastructural morphological findings were assessed by transmission electron microscopy.

View Article and Find Full Text PDF

Cp-Ti is the most common material used for dental implants, but its elastic modulus is around five times higher than that of bone. Recently, promising alloys that add Nb, Ta, Zr and Mo to Ti have been developed. The mechanical properties of these alloys are directly related to its microstructure and the presence of interstitial elements, such as oxygen, carbon, nitrogen and hydrogen.

View Article and Find Full Text PDF

The mechanical properties of Ti alloys are changed significantly with the addition of interstitial elements, such as oxygen. Because oxygen is a strong stabilizer of the α phase and has an effect on hardening in a solid solution, it has aroused great interest in the biomedical area. In this paper, Ti-Zr alloys were subjected to a doping process with small amounts of oxygen.

View Article and Find Full Text PDF

The Ti-15Mo alloy has its mechanical properties strongly altered by heat treatments and by addition of interstitial elements, such as, oxygen, for example. In this sense, the objective of this paper is to analyze the effect of the introduction of oxygen in selected mechanical properties and the biocompatibility of Ti-15Mo alloy. The samples used in this study were prepared by arc-melting and characterized by density measurements, X-ray diffraction, scanning electron microscopy, microhardness, modulus of elasticity, and biocompatibility tests.

View Article and Find Full Text PDF

Ascorbic acid (AA) and β-glycerophosphate (βG) are considered in vitro osteogenic factors important to the differentiation of osteoblastic progenitor and dental pulp cells into mineralized tissue-forming cells. So, the present study investigated in vitro if these mineralizing inducible factors (AA and βG) could influence differentiation of human gingival fibroblasts when compared with human pulp cells and osteogenic cells derived from rat calvaria cultured. The expression of osteopontin (OPN) and osteoadherin (OSAD) was analyzed by indirect immunofluorescence, immunocytochemistry as well as Western-blotting.

View Article and Find Full Text PDF

The most commonly used titanium (Ti)-based alloy for biological applications is Ti-6Al-4V, but some studies associate the vanadium (V) with the cytotoxic effects and adverse reactions in tissues, while aluminum (Al) has been associated with neurological disorders. Ti-Nb alloys belong to a new class of Ti-based alloys with no presence of Al and V and with elasticity modulus values that are very attractive for use as a biomaterial. It is well known that the presence of interstitial elements (such as oxygen, for example) changes the mechanical properties of alloys significantly, particularly the elastic properties, the same way that heat treatments can change the microstructure of these alloys.

View Article and Find Full Text PDF