Background: Biogenic nanoparticles possess a capping of biomolecules derived from the organism employed in the synthesis, which contributes to their stability and biological activity. These nanoparticles have been highlighted for the control of phytopathogens, so there is a need to understand their composition, mechanisms of action, and toxicity. This study aimed to investigate the importance of the capping and compare the effects of capped and uncapped biogenic silver nanoparticles synthesized using the filtrate of Trichoderma harzianum against the phytopathogenic fungus Sclerotinia sclerotiorum.
View Article and Find Full Text PDFLithobates catesbeianus tadpoles were exposed to 1 μg L of zinc (Zn), copper (Cu) and cadmium (Cd) alone or combined (1:1 and 1:1:1) for 2 and 16 days. Results showed a significant increase in the superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx) and glutathione S-transferase (GST) activities in the liver, kidney and muscle (except for GPx) in the groups exposed to metal either alone or co-exposed after 2 days compared to the control. After 16 days, SOD, CAT and GST activities decreased significantly in the liver and kidney and GPx activity increased in the liver.
View Article and Find Full Text PDFBiogenic synthesis of silver nanoparticles employing fungi offers advantages, including the formation of a capping from fungal biomolecules, which provides stability and can contribute to biological activity. In this work, silver nanoparticles were synthesized using Trichoderma harzianum cultivated with (AgNP-TS) and without enzymatic stimulation (AgNP-T) by the cell wall of Sclerotinia sclerotiorum. The nanoparticles were evaluated for the control of S.
View Article and Find Full Text PDFSilver nanoparticles (AgNPs) are known mainly because of their bactericidal properties. Among the different types of synthesis, there is the biogenic synthesis, which allows the synergy between the nanocomposites and substances from the organism employed for the synthesis. This study describes the synthesis of AgNPs using infusion of roots (AgNpR) and extract (AgNpE) of the plant Althaea officinalis.
View Article and Find Full Text PDFPesticides are the main tactics for pest control because they reduce the pest population very fast and their efficiency does not depend on abiotic factors. However, the indiscriminate use of these substances can speed up the development of resistant populations and causing environmental contamination. Therefore, alternative methods of pest control are sought, such as the use of botanical compounds.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
June 2018
This work describes the development of poly-ε-caprolactone nanocapsules (PCL-NC) and solid lipid nanoparticles (SLN) aiming delivery for articaine (ATC), in order to improve its chemical stability in semi-solid preparations looking forward their use for skin delivery. The nanoparticles were characterized by size, polydispersity index, and pH. Cellular viability was evaluated using the MTT test and the in vitro release kinetics was determined using a two-compartment model.
View Article and Find Full Text PDFIn this study, we prepared, characterized, and performed toxicity analyses of poly(ε-caprolactone) nanocapsules loaded with neem oil. Three formulations were prepared by the emulsion/solvent evaporation method. The nanocapsules showed a mean size distribution around 400 nm, with polydispersity below 0.
View Article and Find Full Text PDFWhite mold is an agricultural disease caused by the fungus Sclerotinia sclerotiorum, which affects important crops. There are different ways of controlling this organism, but none provides inhibition of its resistance structures (sclerotia). Nanotechnology offers promising applications in agricultural area.
View Article and Find Full Text PDF