Publications by authors named "Tatiana Zyrianova"

Elevated TNF-α levels in serum and broncho-alveolar lavage fluid of acute lung injury patients correlate with mortality rates. We hypothesized that pharmacological plasma membrane potential (Em) hyperpolarization protects against TNF-α-induced CCL-2 and IL-6 secretion from human pulmonary endothelial cells through inhibition of inflammatory Ca-dependent MAPK pathways. Since the role of Ca influx in TNF-α-mediated inflammation remains poorly understood, we explored the role of L-type voltage-gated Ca (Ca) channels in TNF-α-induced CCL-2 and IL-6 secretion from human pulmonary endothelial cells.

View Article and Find Full Text PDF

Influenza-A virus (IAV) infects yearly an estimated one billion people worldwide, resulting in 300,000-650,000 deaths. Preventive vaccination programs and antiviral medications represent the mainstay of therapy, but with unacceptably high morbidity and mortality rates, new targeted therapeutic approaches are urgently needed. Since inflammatory processes are commonly associated with measurable changes in the cell membrane potential (Em), we investigated whether Em hyperpolarization via TREK-1 () K channel activation can protect against influenza-A virus (IAV)-induced pneumonia.

View Article and Find Full Text PDF

No targeted therapies exist to counteract Hyperoxia (HO)-induced Acute Lung Injury (HALI). We previously found that HO downregulates alveolar K2.1 (TREK-1) K channels, which results in worsening lung injury.

View Article and Find Full Text PDF

We recently established a role for the stretch-activated two-pore-domain K (K2P) channel TREK-1 (K2P2.1) in inflammatory cytokine secretion using models of hyperoxia-, mechanical stretch-, and TNF-α-induced acute lung injury. We have now discovered the expression of large conductance, Ca-activated K (BK) channels in human pulmonary microvascular endothelial cells and primary human alveolar epithelial cells using semiquantitative real-time PCR, IP and Western blot, and investigated their role in inflammatory cytokine secretion using an LPS-induced acute lung injury model.

View Article and Find Full Text PDF

The lacrimal gland (LG) is an exocrine tubuloacinar gland that secretes an aqueous layer of tear film. The LG epithelial tree is comprised of acinar, ductal epithelial, and myoepithelial cells (MECs). MECs express alpha smooth muscle actin (αSMA) and have a contractile function.

View Article and Find Full Text PDF

The balance between proliferation and differentiation of muscle stem cells is tightly controlled, ensuring the maintenance of a cellular pool needed for muscle growth and repair. We demonstrate here that the transcriptional regulator Hes1 controls the balance between proliferation and differentiation of activated muscle stem cells in both developing and regenerating muscle. We observed that Hes1 is expressed in an oscillatory manner in activated stem cells where it drives the oscillatory expression of MyoD.

View Article and Find Full Text PDF

The purpose of the present studies was to investigate the impact of chronic inflammation of the lacrimal gland, as occurs in Sjögren's syndrome, on the morphology and function of myoepithelial cells (MECs). In spite of the importance of MECs for lacrimal gland function, the effect of inflammation on MECs has not been well defined. We studied changes in MEC structure and function in two animal models of aqueous deficient dry eye, NOD and MRL/lpr mice.

View Article and Find Full Text PDF

Purpose: Sjögren's syndrome is a systemic chronic autoimmune inflammatory disease that primarily targets the salivary and lacrimal glands (LGs). Currently there is no cure; therefore, cell-based regenerative therapy may be a viable option. LG inflammation is facilitated by extracellular ATP and mediated by the Pannexin-1 (Panx1) membrane channel glycoprotein.

View Article and Find Full Text PDF