Publications by authors named "Tatiana Yu Sergeeva"

Tissue-engineered vascular graft for the reconstruction of small arteries is still an unmet clinical need, despite the fact that a number of promising prototypes have entered preclinical development. Here we test Poly(3-hydroxybutyrate-co-3-hydroxyvalerate)Poly(ε-caprolactone) 4-mm-diameter vascular grafts equipped with vascular endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF) and stromal cell-derived factor 1α (SDF-1α) and surface coated with heparin and iloprost (PHBV/PCL[VEGF-bFGF-SDF], = 8) in a sheep carotid artery interposition model, using biostable vascular prostheses of expanded poly(tetrafluoroethylene) (ePTFE, = 5) as a control. Primary patency of PHBV/PCL[VEGF-bFGF-SDF] grafts was 62.

View Article and Find Full Text PDF

The development of novel biodegradable vascular grafts of a small diameter (<6 mm) is an unmet clinical need for patients requiring arterial replacement. Here we performed a pre-clinical study of new small-caliber biodegradable vascular grafts using a sheep model of carotid artery implantation. The 4 mm diameter vascular grafts were manufactured using a mix of polyhydroxybutyrate/valerate and polycaprolactone supplemented with growth factors VEGF, bFGF and SDF-1α (PHBV/PCL-GFmix) and additionally modified by a polymer hydrogel coating with incorporation of drugs heparin and iloprost (PHBV/PCL-GFmix).

View Article and Find Full Text PDF

A nanocarrier (p(6SRA-5B)) for glucose-controlled insulin delivery consists of sulfonated resorcinarenes (SRA) that are assembled into a spherical shell and are attached to each other with phenylboronate linkers. p(6SRA-5B) is stable in water and blood plasma at normal glucose concentrations. At high glucose levels (>5 mM), p(6SRA-5B) dissociates into SRA and phenylboronates through competitive interaction with excess glucose.

View Article and Find Full Text PDF

Novel polymer nanospheres (p(SRA-B)) were prepared by cross-linking a sulfonated resorcinarene (SRA) with phenylboronic acid. p(SRA-B) shows good stability in water and can be used as a nanocontainer for the pH- and glucose-controlled substrate release. Fluorescent dyes (fluorescein, pyrene and 1,3,6,8-pyrenetetrasulfonic acid tetrasodium salt) were successfully loaded into p(SRA-B).

View Article and Find Full Text PDF