Publications by authors named "Tatiana Takiishi"

Objectives: Type 1 diabetes (T1D) is caused by progressive immune-mediated loss of insulin-producing β-cells. Inflammation is detrimental to β-cell function and survival, moreover, both apoptosis and necrosis have been implicated as mechanisms of β-cell loss in T1D. The receptor interacting serine/threonine protein kinase 1 (RIPK1) promotes inflammation by serving as a scaffold for NF-κB and MAPK activation, or by acting as a kinase that triggers apoptosis or necroptosis.

View Article and Find Full Text PDF

The transcription factor nuclear factor-κB (NF-κB) has a key role in the pathogenesis of diabetes and its complications. Although activation of the canonical NF-κB pathway in β-cells is generally deleterious, little is known about the role of the non-canonical NF-κB signalling and its main regulator, the NF-κB-inducing kinase (NIK), on pancreatic β-cell survival and function. Previous studies based on models of NIK overexpression in pancreatic islet cells showed that NIK induced either spontaneous β-cell death due to islet inflammation or glucose intolerance during diet-induced obesity (DIO) in mice.

View Article and Find Full Text PDF

Little is known about the diversity in immune profile of the different wild type strains of zebrafish (), despite its growing popularity as an animal model to study human diseases and drug testing. In the case of data resulting from modeling human diseases, differences in the background Danio fishes have rarely been taken into consideration when interpreting results and this is potentially problematic, as many studies not even mention the source and strain of the animals. In this study, we hypothesized that different wild type zebrafish strains could present distinct immune traits.

View Article and Find Full Text PDF

The short-chain fatty acids (SCFAs) are metabolites originated from the fermentation of dietary fibers and amino acids produced by the bacteria of the intestinal microbiota. The most abundant SCFAs, acetate, propionate, and butyrate, have been proposed as a treatment for inflammatory bowel diseases (IBDs) due to their anti-inflammatory properties. This work aimed to analyze the effects of the treatment of three combined SCFAs in TNBS-induced intestinal inflammation in zebrafish larvae.

View Article and Find Full Text PDF

Organ transplantation is a life-saving procedure, however predicting graft survival is still challenging. Understanding immune-cell pathobiology is critical to the development of effective therapies to prevent rejection. Over the recent years it has become progressively evident that the complex nature of immune cell behavioral dynamics is strongly dependent on cellular metabolism, which in turn, relies on competition for nutrients, oxygen and metabolites with other immune cells and microbiota.

View Article and Find Full Text PDF

The gastrointestinal (GI) tract is considered the largest immunological organ in the body having a central role in regulating immune homeostasis. Contrary to earlier belief, the intestinal epithelial barrier is not a static physical barrier but rather strongly interacts with the gut microbiome and cells of the immune system. This intense communication between epithelial cells, immune cells and microbiome will shape specific immune responses to antigens, balancing tolerance and effector immune functions.

View Article and Find Full Text PDF

The introduction of β-cell autoantigens via the gut through Lactococcus lactis (L. lactis) has been demonstrated to be a promising approach for diabetes reversal in NOD mice. Here we show that a combination therapy of low-dose anti-CD3 with a clinical-grade self-containing L.

View Article and Find Full Text PDF

Combining immune intervention with therapies that directly influence the functional state of the β-cells is an interesting strategy in type 1 diabetes cure. Dipeptidyl peptidase-4 (DPP-4) inhibitors elevate circulating levels of active incretins, which have been reported to enhance insulin secretion and synthesis, can support β-cell survival and possibly stimulate β-cell proliferation and neogenesis. In the current study, we demonstrate that the DPP-4 inhibitor MK626, which has appropriate pharmacokinetics in mice, preceded by a short-course of low-dose anti-CD3 generated durable diabetes remission in new-onset diabetic non-obese diabetic (NOD) mice.

View Article and Find Full Text PDF

Growing insight into the pathogenesis of type 1 diabetes (T1D) and numerous studies in preclinical models highlight the potential of antigen-specific approaches to restore tolerance efficiently and safely. Oral administration of protein antigens is a preferred method for tolerance induction, but degradation during gastrointestinal passage can impede such protein-based therapies, reducing their efficacy and making them cost-ineffective. To overcome these limitations, we generated a tolerogenic bacterial delivery technology based on live Lactococcus lactis (LL) bacteria for controlled secretion of the T1D autoantigen GAD65370-575 and the anti-inflammatory cytokine interleukin-10 in the gut.

View Article and Find Full Text PDF

High doses of the active form of vitamin D3, 1,25-dihydroxyvitamin D3 [1,25(OH)2D3], prevent diabetes in the NOD mouse but also elicit unwanted calcemic side effects. Because immune cells themselves can convert vitamin D3 into 1,25(OH)2D3 locally, we hypothesized that dietary vitamin D3 can also prevent disease. Thus, we evaluated whether dietary administration of high doses of regular vitamin D3 (800 IU/day) during different periods of life (pregnancy and lactation, early life [3-14 weeks of age], or lifelong [3-35 weeks of age]) safely prevents diabetes in NOD mice.

View Article and Find Full Text PDF

Vitamin D is a fat-soluble precursor of the circulating 25-hydroxyvitamin D₃ (25(OH)D₃)which can be converted by the 1α-hydroxylase (1α(OH)ase) enzyme into the bioactive hormonal metabolite 1,25-dihydroxyvitamin D₃ (1,25(OH)₂D₃), generally known to promote bone mineralization through its ability to enhance calcium absorption from the gut. Importantly, in humans, vitamin D is mainly derived from endogenous production of vitamin D₃ from ultraviolet (UV) radiation exposure to the skin while a small part (<10%) is obtained via dietary intake of dairy products and fatty fish (1). Taking these factors into account, geographic distribution and seasonality, skin pigmentation, age, and lifestyle may predispose certain populations to be at a higher risk of developing vitamin D insufficiency or deficiency (2).

View Article and Find Full Text PDF

The vitamin D receptor (VDR) is a hormone nuclear receptor regulating bone and calcium homeostasis. Studies revealing the expression of VDR on immune cells point toward a role for VDR-dependent signaling pathways in immunity. Here we verified the ability of the natural VDR ligand, 1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)) to interfere in inflammatory and T cell stimulatory capacity of macrophages, in particular within a chronic inflammatory disease features of experimental type 1 diabetes (T1D).

View Article and Find Full Text PDF

There is no doubt that vitamin D deficiency is the cause of several metabolic bone diseases, but vitamin D status is also linked to many major human diseases including immune disorders. Mounting data strengthen the link between vitamin D and diabetes, in particular T1D and T2D. Despite some inconsistencies between studies that associate serum 25(OH)D levels with the risk of developing T1D or T2D, there seems to be an overall trend for an inverse correlation between levels of 25(OH)D and both disorders.

View Article and Find Full Text PDF

Current interventions for arresting autoimmune diabetes have yet to strike the balance between sufficient efficacy, minimal side effects, and lack of generalized immunosuppression. Introduction of antigen via the gut represents an appealing method for induction of antigen-specific tolerance. Here, we developed a strategy for tolerance restoration using mucosal delivery in mice of biologically contained Lactococcus lactis genetically modified to secrete the whole proinsulin autoantigen along with the immunomodulatory cytokine IL-10.

View Article and Find Full Text PDF

We performed a comparative study and evaluated cellular infiltrates and anti-inflammatory cytokine production at different time-points after syngeneic or allogeneic skin transplantation. We observed an early IL-10 production in syngeneic grafts compared with allografts. This observation prompted us to investigate the role of IL-10 in isograft acceptance.

View Article and Find Full Text PDF

Type 1 (T1D) and type 2 (T2D) diabetes are considered multifactorial diseases in which both genetic predisposition and environmental factors participate in their development. Many cellular, preclinical, and observational studies support a role for vitamin D in the pathogenesis of both types of diabetes including: (1) T1D and T2D patients have a higher incidence of hypovitaminosis D; (2) pancreatic tissue (more specifically the insulin-producing beta-cells) as well as numerous cell types of the immune system express the vitamin D receptor (VDR) and vitamin D-binding protein (DBP); and (3) some allelic variations in genes involved in vitamin D metabolism and VDR are associated with glucose (in)tolerance, insulin secretion, and sensitivity, as well as inflammation. Moreover, pharmacologic doses of 1,25-dihydroxyvitamin D (1,25(OH)(2)D), the active form of vitamin D, prevent insulitis and T1D in nonobese diabetic (NOD) mice and other models of T1D, possibly by immune modulation as well as by direct effects on beta-cell function.

View Article and Find Full Text PDF

1,25-dihydroxyvitamin D(3) (1,25(OH)(2)D(3)), the active form of vitamin D, is known to regulate calcium and phosphorus metabolism, thus being a key-player in bone-formation. However 1,25(OH)(2)D(3) also has a physiological role beyond its well-known role in skeletal homeostasis. Here, we describe 1,25(OH)(2)D(3) as an immunomodulator targeting various immune cells, including monocytes, macrophages, dendritic cells (DCs), as well as T-lymphocytes and B-lymphocytes, hence modulating both innate and adaptive immune responses.

View Article and Find Full Text PDF